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Abstract. We present a verification-based learning framework VEL that
synthesizes safe programmatic controllers for environments with contin-
uous state and action spaces. The key idea is the integration of pro-
gram reasoning techniques into controller training loops. VEL performs
abstraction-based program verification to reason about a programmatic
controller and its environment as a closed-loop system. Based on a novel
verification-guided synthesis loop for training, VEL minimizes the amount
of safety violation in the proof space of the system, which approximates
the worst-case safety loss, using gradient-descent style optimization. Ex-
perimental results demonstrate the substantial benefits of leveraging ver-
ification feedback for synthesizing provably correct controllers.

1 Introduction

Controller search is commonly used to govern cyber-physical systems such as
autonomous vehicles, where high assurance is particularly important. Reinforce-
ment Learning (RL) of neural network controllers is a promising approach for
controller search [19]. State-of-the-art RL algorithms can learn motor skills au-
tonomously through trial and error in simulated or even unknown environments,
thus avoiding tedious manual engineering. However, well-trained neural network
controllers may still be unsafe since the RL algorithms do not provide any formal
guarantees on safety. A learned controller may fail occasionally but catastroph-
ically, and debugging these failures can be challenging [46].

Guaranteeing the correctness of an RL controller is therefore important.
Principally, given an environment model, the correctness of a controller can
be verified by reachability analysis over a closed-loop system that combines the
environment model and the controller. Indeed, the use of formal verification
techniques to aid the design of reliable learning-enabled autonomous systems
has risen rapidly over the last few years [43,28,41,18,17]. A natural extended
question is that in case verification fails, can we exploit verification feedback in
the form of counterexamples to synthesize a verifiably correct controller? This
turns out to be a very challenging task due to the following reasons.

Verification Scalability. A counterexample-guided controller synthesizer has
to iteratively conduct reachability analysis and controller optimization as each
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if 28.33x1 + 4.23x2 + 4.16 ≥ 0
then 6.79x1 − 8.56x2 + 0.35
else 11.01x1 − 13.50x2 + 8.71

(a) Oscillator Programmatic Controller (b) Oscillator Reachability Analysis

Fig. 1: An oscillator programmatic controller and its reachability analysis. In
Fig. 1b, the red region represents the oscillator unsafe set (−03,−0.25) ×
(0.2, 0.35), and the blue region depicts the target set [−0.05, 0.05]× [−0.05, 0.05].
The initial state set of oscillator is [−0.51,−0.49]× [0.49, 0.51].

iteration may discover a new counterexample. However, repeatedly calculating
the reachable set of a nonlinear system controlled by a neural network controller
over a long horizon is computationally challenging. For example, consider de-
signing a controller for the Van der Pol’s oscillator system [49]. The oscillator
is a 2-dimensional non-linear system whose state transition can be expressed by
the following ordinary differential equations:

ẋ1 = x2 ẋ2 = (1− x21)x2 − x1 + u (1)

where (x1, x2) is the system state variables and u is the control action variable.
A feedback controller π(x1, x2) measures the current system state and then ma-
nipulates the control input u as needed to drive the system toward its target.
The initial set of the control system is (x1, x2) ∈ [−0.51,−0.49]× [0.49, 0.51]. As
depicted in Fig. 1b, the controlled system is expected to reach the target region
in blue while avoiding the obstacle region in red within 120 timesteps (i.e. con-
trol steps). In our experience, even for this simple example, using Verisig [28]
and ReachNN∗ [18] (two state-of-the-art verification tools for neural network
controlled systems) to calculate the reachable set of a simple 2-layer neural net-
work feedback controller πNN(x1, x2) costs more than 100s each. It is even more
a costly process to repeatedly conduct reachability analysis of a complex neural
network controller in a counterexample-guided learning loop.

Recently, programmatic controllers emerge as a promising solution to address
the lack of interpretability problem in deep reinforcement learning [47,27,44,38]
by training controllers as programs. A programmatic controller to control the
oscillator environment learned by a programmatic reinforcement learning algo-
rithm [38] is depicted in Fig. 1a. We depict the decision boundary of the pro-
gram’s conditional statement (28.33x1 + 4.23x2 + 4.16 = 0) in solid dash
in Fig. 1b. The program can be interpreted as a decomposition of the reach-
avoid learning problem into two sub-problems — the linear controller in the else
branch of the program first pushes the system away from the obstacle and next
the linear controller in the then branch takes over to make the system reach the
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target. As we show in this paper, the compact and structured representation of
a programmatic controller lends itself amenable to off-the-shelf hybrid or con-
tinuous system reachability tools e.g. [10,20]. Compared with verifying a deep
neural network controller, reasoning about a programmatic controller is more
feasible. However, the question remains when verification fails – rather than re-
training a new controller, how can we leverage verification feedback to construct
a verifiably correct controller?

Proof Space Optimization. The other main challenge of verification-guided
controller synthesis is that when verification fails, the counterexample path
may provide little help or even be spurious due to estimated approximation
errors. This is because reachability analyses typically overapproximate the true
reachable sets using a computationally convenient representation such as poly-
topes [20] or Taylor models [10]. This overapproximation leads to quick error
accumulation over time, known as the wrapping effect. Even a well-trained con-
troller may fail verification because of approximation errors. For example, we
adapted a state-of-the-art reachability analyzer Flow∗ [10] to conduct reachabil-
ity analysis of the closed-loop system combined by the programmatic controller
in Fig. 1a and the oscillator environment (Equation 1) to compute a reachable
state set between each time interval within the episode horizon (the controller
is applied to generate a control action at the start of each time interval). The
result is depicted in Fig. 1b. Although the programmatic controller empirically
succeeds reaching the goal on extensive test simulations, the reachability analysis
cannot determine whether the target region can always be reached as it computes
a larger reachable region that keeps expansion, which may be an overestimation
caused by over-approximation.

We hypothesize that verification failures can be caused by (1) true counterex-
ample of unsafe states, (2) states caused by approximate errors, and (3) states
in between the time interval of each control step (RL algorithms only sample
states at the start and the end of a time interval). The latter two kinds of states
cannot be observed by an RL algorithm during training in the concrete system
state space. Thus, counterexample-guided controller synthesis may not work well
if counterexamples are in the form of paths within the concrete state space.

To address this challenge, we propose synthesizing controllers in the proof
space of a reachability analyzer. Controller synthesis in the proof space is critical
to learning a verified controller because it can leverage verification feedback on
either true unsafe counterexample states or approximation errors introduced by
the verification procedure for searching a provably correct controller. A coun-
terexample detected by a reachability analyzer is a symbolic rollout of abstract
states of the closed-loop system that combines a (fixed) environment model and
a (parameterized) programmatic controller. An abstract state (e.g. depicted as
a green region in Fig. 1b) at a timestep over-approximates the set of concrete
states reachable during the time interval of the timestep. VEL quantifies the
safety and reachability property violation by the abstract states, e.g. there is
an abstract loss between the approximative abstract state and the target region
at the last control step. The loss approximates the worst-case reachability loss
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of any concrete state subsumed by the abstraction. We introduce lightweight
gradient-descent style optimization algorithms to optimize controller parame-
ters to effectively minimize the amount of correctness property violation to zero
to refute any verification counterexamples.

Contributions. The main contribution of this paper is twofold. First, we
present an efficient controller synthesis approach that integrates formal veri-
fication within a programmatic controller learning loop. Second, instead of syn-
thesizing a programmatic controller from concrete state and action samples, we
optimize the controller using symbolic rollouts with abstract states obtained by
reachability analysis in the verification proof space. We implement the proposed
ideas in a tool called VEL and present a detailed experimental study over a
range of reinforcement learning systems. Our experiments demonstrate the ben-
efits of integrating formal verification as part of the training objective and using
verification feedback for controller synthesis.

2 Problem Setup

Environment Models. An environment is a structure M δ[·] = (S,A, F : {S×
A→ S}, R : {S ×A→ R}, ·) where S is an infinite set of continuous real-vector
environment states which are valuations of the state variables x1, x2, . . . , xn of
dimension n (S ⊆ Rn); and A is a set of continuous real-vector control actions
which are valuations of the action variables u1, u2, . . . , um of dimension m. F
is a state transition function that emits the next environment state given a
current state s and an agent action a. We assume that F is defined by an
ordinary differential equation (ODE) in the form of ẋ = f(x, u) and the function
f : Rm×Rn → Rm is Lipschitz continuous in x and continuous in u. R(s, a) is the
immediate reward after transition from an environment state s ∈ S with action
a ∈ A. An environment M δ[·] is parameterized with an (unknown) controller.

Controllers. An agent uses a controller to interact with an environment M δ[·].
We explicitly model the deployment of a (learned) controller π : {S → A} in
M δ[·] as a closed-loop system M δ[π]. The controller π determines which action
the agent ought to take in a given environment state. Specifically, it is invoked
every δ time period at a timestep. π reads the environment state si = s(iδ)
at time t = iδ (i = 0, 1, 2, . . .) or timestep i, and computes a control action
as ai = a(iδ) = π(s(iδ)). Then the environment evolves following the ODE
ẋ = f(x, a(iδ)) within the time period [iδ, (i+ 1)δ] and obtain the state si+1 =
s((i+ 1)δ) at the next timestep i+ 1. In the oscillator example from Sec. 1, the
duration δ of a timestep is 0.05s and the time horizon is 6s (i.e. 120 timesteps).

For environment simulation, given a set of initial states S0, we assume the
existence of a flow function1 φ(s0, t) : S0×R+ → S that maps some initial state
s0 to the environment state φ(s0, t) at time t where φ(s0, 0) = s0. We note that
φ is the solution of the ODE ẋ = f(x, a(iδ)) in the state transition function F
during the time period [iδ, (i+ 1)δ] and a(iδ) = π(φ(s0, iδ)).

1 φ may be implemented using scipy.integrate.odeint (or scipy.integrate.solve ivp).
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Reinforcement Learning (RL). Given a set of initial states S0 and a time
horizon Tδ (T > 0) with δ as the duration of a timestep, a T -timestep rollout ζ
of a controller π is denoted as (ζ = s0, a0, s1, . . . , sT ) ∼ π where si = s(iδ) and
ai = a(iδ) are the environment state and the action taken at timestep i such
that s0 ∈ S0, si+1 = F (si, ai), and ai = π(si). The aggregate reward of π is

JR(π) = E(ζ=s0,a0,...,sT )∼π[

T∑
t=0

βtR(si, ai)] (2)

where β is the reward discount factor (0 < β ≤ 1). Controller search via RL
aims to produce a controller π that maximizes JR(π).

Controller Correctness Specification. A correctness specification of a con-
troller is a logical formula specifying whether any rollout ζ of the controller
accomplishes the task without violating safety properties and reachability prop-
erties. To define safety and reachability over rollouts, the user first specifies a
set of atomic predicates over environment states s.

Definition 1 (Predicates). A predicate ϕ is a quantifier-free Boolean combi-
nations of linear inequalities over the environment state variables x:

〈ϕ〉 ::= 〈P〉 | ϕ ∧ ϕ | ϕ ∨ ϕ;

〈P〉 ::= A · x ≤ b where A ∈ R|x|, b ∈ R;

A state s ∈ S satisfies a preciate ϕ, denoted as s |= ϕ, iff ϕ(s) is true.
The correctness requirement of a controller goes beyond from predicates over

environment states s to specifications over controller rollouts ζ.

Definition 2 (Rollout Specifications). The syntax of our correctness speci-
fications for RL controllers is defined as:

ψ ::= ϕI reach ϕ1 ensuring ϕ2

In a rollout specification, ϕI reach ϕ1 enforces reachability - the controlled agent
should eventually reach some goal states evaluated true by the predicate ϕ1 from
an initial state that satisfies ϕI. For instance, the agent should achieve some goals
from an initial state. The constraint ensuring ϕ2 additionally enforces safety -
any rollout of the controller should only visit safe states evaluated true by the
predicate ϕ2. For example, the agent should remain within a safety boundary or
avoid any obstacles throughout a rollout. Formally, the semantics of a rollout
specification ψ is defined as follows:

JϕI reach ϕ1 ensuring ϕ2K(ζ0:T ) = ϕ1(sT ) ∧ (∀ 0 ≤ i ≤ T. ϕ2(si))

where ζ0:T = s0, s1, . . . , sT is a rollout such that s0 ∈ ϕI and T > 0 denotes the
total number of timesteps. Our specification implicitly requires that if the target
region is reached before the T timestep of a rollout, the controlled agent does not
leave the target region at the end of the rollout.
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Given a time horizon Tδ (T > 0), a controller π is correct for an environment
M δ[·] with respect to a rollout specification ψ ::= ϕI reach ϕ1 ensuring ϕ2 iff for
any rollout ζ0:T = s0, s1, . . . sT−1, sT of M δ[π] such that ϕI(s0) holds, JψK(ζ0:T )
is true. Notice that this definition does not consider any states of the continuous
environment occurring within the time period of a timestep.

Example 1 Continue the oscillator example. Assume an oscillator initial state
is from x1, x2 ∈ [−0.51,−0.49]× [0.49, 0.51]. Specify the initial state constraint:

ϕI(x1, x2) ≡ −0.51 ≤ x1 ≤ −0.49 ∧ 0.49 ≤ x2 ≤ 0.51

The unsafe set of oscillator is (−03,−0.25) × (0.2, 0.35) (depicted as the red
region in Fig. 1b). The safety ϕsafe of the system is specified as:

ϕsafe(x1, x2) ≡ x1 ≤ −0.3 ∨ x1 ≥ −0.25 ∨ x2 ≤ 0.2 ∨ x2 ≥ 0.35

For this example, the target region is [−0.05, 0.05]× [−0.05, 0.05] (the blue region
in Fig. 1b). The reachability of the system ϕreach is specified as:

ϕreach(x1, x2) ≡ −0.05 ≤ x1 ≤ 0.05 ∧ −0.05 ≤ x2 ≤ 0.05

The target region should be eventually reached by the end of a control episode
while avoiding the unsafe state region. We express the rollout specification as:

ϕI(x1, x2) reach ϕreach(x1, x2) ensuring ϕsafe(x1, x2)

The following specification formulates that a desired controller stabilizes the os-
cillator around the target region over an infinite time horizon:

ϕreach(x1, x2) reach ϕreach(x1, x2) ensuring ϕsafe(x1, x2)

3 Programmatic Controllers

Programmatic controllers have emerged as a promising solution to address the
lack of interpretability in deep reinforcement learning [47,38,27,8] by learning
controllers as programs. This paper focuses on programmatic controllers struc-
tured as differentiable programs [38].

Our programmatic controllers follow the high-level context-free grammar de-
picted in Fig. 2 where E is the start symbol, θ represents real-valued parameters
of the program. The nonterminals E and B stand for program expressions that
evaluate to action values in Rm and Booleans, respectively, where m is the action
dimension size, θ1 ∈ R and θ2 ∈ Rn. We represent a state input to a program-
matic controller as s = {x1 : ν1, x2 : ν2, . . . , xn} where n is the state dimension
size and νi = s[xi] is the value of xi in s. As usual, the unbounded variables in
X = [x1, x2, . . . , xn] are assumed to be input variables (i.e., state variables). C
is a low-level affine controller that can be invoked by a programmatic controller
where θ3, θc ∈ Rm, θ4 ∈ Rm·n are controller parameters. Notice that C can be
as simple as some (learned) constants θc.
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E ::= C | if B then C else E

B ::= θ1 + θT2 · X ≥ 0

C ::= θ3 + θ4 · X | θc

Fig. 2: A context-free grammar for programmatic controllers.

The semantics of a programmatic controller in E is mostly standard and
given by a function JEK(s), defined for each language construct. For example,
JxiK(s) = s[xi] reads the value of a variable xi in a state s. A controller may use an
if-then-else branching construct. To avoid discontinuities for differentiability,
we interpret its semantics in terms of a smooth approximation:

Jif B then C else EK(s) = σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s) (3)

where σ is the sigmoid function. Thus, any controller programmed in this gram-
mar is a differentiable program. During execution, a programmatic controller
invokes a set of low-level affine controllers under different environment condi-
tions, according to the activation of the B conditions in the program.

Programmatic Reinforcement Learning. We use the programmatic rein-
forcement learning algorithm [38] to learn a programmatic controller. Compared
with other programmatic reinforcement learning approaches [27,47], this algo-
rithm stands out by jointly learning both program structures and program pa-
rameters. Empirical results show that learned programmatic controllers achieve
comparable or even better reward performance than deep neural networks [38].

4 Proof Space Optimization

The main challenge of using a verification procedure to guide controller synthe-
sis is that verifiers are in general incomplete. When verification fails, it does not
necessarily mean the system under verification has a true counterexample as the
verifier may introduce states caused by over-approximation errors, commonly
seen in reachability analysis. Even a well-trained controller may fail verifica-
tion because of approximation errors. In our context, for soundness, reachability
analysis of continuous or hybrid systems additionally takes environment states
in between the time interval of a timestep into account. Both of these kinds
of states cannot be observed by RL agents during training in the concrete state
space, which renders the importance of controller optimization in the proof space
of verification. In the following, Sec. 4.1 defines a verification procedure for en-
vironment models governed by programmatic controllers. Sec. 4.2 encodes veri-
fication feedback as a loss function of controller parameters over the verification
proof space. Finally, Sec. 4.3 defines an optimization procedure that iteratively
minimizes the loss function for correct-by-construction controller synthesis.
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4.1 Controller Verification

We formalize controller synthesis as a verification-based controller optimization
problem. A synthesized controller π is certified by a formal verifier against an
environment model M δ[·] and a rollout specification ψ (Definition 2). The verifier
returns true if π can be verified correct.

Reinforcement learning algorithms typically discretize a continuous envi-
ronment model M δ[·] to sample environment states every δ time period (as a
timestep) for controller learning (Sec. 2). For soundness, in verification our ap-
proach instead considers all states reachable by the original continuous system.
Formally, given a set of initial states S0, we use Si (i > 0) to represent the set
of reachable concrete states during the time interval of [(i− 1)δ, iδ]:

Si = {φ(s0, t) | ∀s0 ∈ S0, ∀t ∈ [(i− 1)δ, iδ]}

where φ is the flow function for environment state transition defined in Sec. 2.
Our algorithm uses abstract interpretation to soundly approximate the set of
reachable states Si at each time step by reachability analysis.

Definition 3 (Symbolic Rollouts). Given an environment model M δ[π] =
(S,A, F,R, π) deployed with a controller π, a set of initial states S0, and an
abstract domain D, a symbolic rollout of M δ[π] over D is ζD = SD0 , S

D
1 , . . .

where SD0 = α(S0) is the abstraction of the initial states S0 in D. Each symbolic
state SDi = FD[π]

(
SDi−1

)
over-approximates Si - the set of reachable states from

the initial state S0 during the time interval [(i− 1)δ, iδ] of the timestep i. FD is
an abstract transformer for M δ[π]’s state transition function F .

Our implementation of the abstract interpreter FD is based on Flow∗ [10], a
reachability analyzer for continuous or hybrid systems, where the abstract do-
main D is Taylor Model (TM) flowpipes. Formally, for reachability computation
at each timestep i (where i > 0), we firstly use Flow∗ to evaluate the TM flow-
pipe Ŝi−1 for the reachable set of states at time t = (i − 1)δ. To obtain a TM
representation for the output set of the programmatic controller at timestep i,
we use TM arithmetic to evaluate a TM flowpipe Âi−1 for JπK(s) for all states
s ∈ Ŝi−1. Here JπK encodes the semantics of π (Equation 3). For example, the
semantics of the oscillator controller in Fig. 1a is:

σ(28.33x1 + 4.23x2 + 4.16)× (6.79x1 − 8.56x2 + 0.35)

+ (1− σ(28.33x1 + 4.23x2 + 4.16))× (11.01x1 − 13.50x2 + 8.71)

where the sigmoid function σ can be handled by TM arithmetic. The resulting
TM representation Âi−1 can be viewed as an overapproximation of the con-
troller’s output at timestep i. Finally, we use Flow∗ to construct the TM flow-
pipe overapproximation SDi for all reachable states during the time period at
timestep i by reachability analysis over the ODE dynamics of the transition
function ẋ = f(x, a) for δ time period with initial state x(0) ∈ Ŝi−1 and the
control action a ∈ Âi−1.
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Verification Procedure. Given a closed-loop system M δ[π], a time horizon
Tδ (T > 0), and a rollout specification ψ ::= JϕI reach ϕ1 ensuring ϕ2K, we
obtain the symbolic rollout of M δ[π] as ζD0:T = SD0 , S

D
1 , . . . , S

D
T where SD0 is the

abstraction of all states in ϕI in the abstract domain D. For formal verification,
we extend the semantics definition of the rollout specification JψK over concrete
rollouts (Definition 2) to support symbolic rollouts. Formally, JψK(ζD0:T ) holds iff:

∀s ∈ γ(SDT ). ϕ1(s)
∧
∀ 0 ≤ i ≤ T, s ∈ γ(SDi ). ϕ2(s)

where γ is the concretization function of the abstract domain D. The closed-
loop system M δ[π] satisfies ψ, denoted as M δ[π] |= ψ, iff JψK(ζD0:T ) holds. The
abstract domain D is the proof space of controller verification.

Example 2 To verify the closed-loop system composed by the oscillator ODE
in Eq. 1 and the learned controller in Fig. 1a, we have conducted reachability
analysis to overapproximate the reachable state set during the time period of
each timestep within the episode horizon. The result of the TM flowpipes are
depicted as a sequence of green regions in Fig. 1b. The verification procedure
cannot guarantee that the target be reached eventually due to the approximation
errors.

4.2 Correctness Property Loss in the Proof Space

To facilitate controller optimization in the presence of verification failures, our
approach measures the amount of correctness property violation as verification
feedback. To this end, we firstly define correct property violation over the con-
crete environment state space and then lift this definition to the proof space of
controller verification.

We note that a controller rollout that fails correctness property verification
violates desired properties at some states. The following definition characterizes
a correctness loss function to quantify the correctness property violation of a
state.

Definition 4 (State Correctness Loss Function). For a predicate ϕ over
states s ∈ S, we define a non-negative loss function L(s, ϕ) such that L(s, ϕ) = 0
iff s satisfies ϕ, i.e. s |= ϕ. We define L(s, ϕ) recursively, based on the possible
shapes of ϕ (Definition 1):

– L(s,A · x ≤ b) := max(A · s− b, 0)
– L(s, ϕ1 ∧ ϕ2) := max(L(s, ϕ1),L(s, ϕ2))
– L(s, ϕ1 ∨ ϕ2) := min(L(s, ϕ1),L(s, ϕ2))

Notice that L(s, ϕ1 ∧ ϕ2) = 0 iff L(s, ϕ1) = 0 and L(s, ϕ2) = 0, and similarly
L(ϕ1 ∨ ϕ2) = 0 iff L(ϕ1) = 0 or L(ϕ2) = 0.

Our objective is to use verification feedback to improve controller safety. To
this end, we lift the correctness loss function over concrete states (Definition 4)
to an abstract correctness loss function over abstract states.
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Definition 5 (Abstract State Correctness Loss Function). Given an ab-
stract state SD and a predicate ϕ, we define an abstract correctness loss function:

LD(SD, ϕ) = max
s∈γ(SD)

L(s, ϕ)

where γ is the concretization function of the abstract domain D. The abstract
correctness loss function applies γ to obtain all concrete states represented by
an abstract state SD. It measures the worst-case correctness loss of ϕ among all
concrete states subsumed by SD. Given an abstract domain D, we can usually
approximate the concretization of an abstract state γ(SD) with a tight interval
γI(S

D). As exemplified in Fig. 1b, it is straightforward to represent Taylor model
flowpipes as intervals in Flow∗. Based on the possible shape of ϕ, we redefine
LD(SD, ϕ) as:

– LD(SD,A · x ≤ b) := maxs∈γI(SD)

(
max(A · s− b, 0)

)
– LD(SD, ϕ1 ∧ ϕ2) := max(LD(SD, ϕ1),LD(SD, ϕ2))
– LD(SD, ϕ1 ∨ ϕ2) := min(LD(SD, ϕ1),LD(SD, ϕ2))

Theorem 1 (Abstract State Correctness Loss Function Soundness).
Given an abstract state SD and a predicate ϕ, we have:

LD(SD, ϕ) = 0 =⇒ ∀s ∈ γI(SD) s |= ϕ.

We further lift the definition of the correctness loss function over abstract
states (Definition 5) to a correctness loss function over symbolic rollouts.

Definition 6 (Symbolic Rollout Correctness Loss). Given a rollout speci-
fication ψ := ϕI reach ϕ1 ensuring ϕ2 and a symbolic rollout ζD0:T = SD0 , . . . , S

D
T

where SD0 is the abstraction of all states in ϕI in the abstract domain D, we de-
fine an abstract safety loss function LD(ζ0:T , ψ) measuring the degree to which
the rollout specification is violated:

LD(ζ0:T , ϕI reach ϕ1 ensuring ϕ2) = max(LD(SDT , ϕ1), max
0<i≤T

(LD(SDi , ϕ2)))

Definition 6 enables a quantitative metric for the correctness loss of a con-
troller in the verification proof space. Given a closed loop system M δ[π], a
time horizon Tδ, a rollout specification ψ, and the corresponding symbolic
rollout ζD0:T of M δ[π], the correctness loss of M δ[π] with respect to ψ, de-
noted as LD(M δ[π], ψ), is defined over the symbolic rollout i.e. LD(M δ[π], ψ)
= LD(ζD0:T , ψ).

Example 3 In Fig. 1b, there is a correctness loss (depicted as a red arrow)
between the abstract state at the last timestep of the oscillator symbolic rollout
and the desired reachable region ϕreach defined in Example 1. We characterize
it as an abstract state correctness loss. The whole symbolic rollout has the same
correctness loss with respect to the rollout specification defined in Example 1.

Theorem 2 (Symbolic Rollout Correctness Soundness). Given an envi-
ronment M δ[·] deployed with a controller π and a rollout specification ψ, we
have

LD(M δ[π], ψ) = 0 =⇒ M δ[π] |= ψ.
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Algorithm 1 VEL: Verification-based learning framework for controller syn-
thesis. In line 8, ωk is a Gaussian noise and ν is a small positive real number.

Require: Environment model Mδ[·], rollout specification ψ, initial controller πθ
trained using the programmatic RL algorithm [38].

Ensure: Optimized controller πθ such that Mδ[πθ] |= ψ.

1: procedure VEL
2: θ ← all parameters in πθ for optimization
3: while true do
4: `D ← LD(Mδ[πθ], ψ)
5: if `D = 0 then
6: Dump πθ to a verified controller list
7: end if

8: ∇θLD ← 1
N

∑N
k=1

LD(Mδ [πθ+νωk
], ψ)−LD(Mδ [πθ−νωk ],ψ)

ν
ωk

9: θ ← θ − η · ∇θLD where η is a learning rate
10: end while
11: end procedure

4.3 Controller Synthesis

The unique feature of our controller synthesis algorithm is that it leverages
verification feedback on either true unsafe states or overapproximation errors
introduced by verification to search for a provably correct controller.

Controller Synthesis in the Proof Space. We deem a programmatic con-
troller π with trainable parameters θ (e.g. from the grammar in Fig. 2) as πθ.
Given a closed-loop system M δ[πθ], the correctness loss function LD(M δ[πθ], ψ)
is essentially a function of πθ’s parameters θ. To reduce the correctness loss
of πθ over the proof space D, we leverage a gradient-descent style optimiza-
tion to update θ by taking steps proportional to the negative of the gradient of
LD(M δ[πθ], ψ) at θ. As opposed to standard gradient descent optimization, we
optimize πθ based on symbolic rollouts in the proof space D, favouring the ab-
stract interpreter (i.e. Flow∗) directly for verification-guided controller updates.

Black-box Gradient Estimation. Directly deriving the gradients of LD, how-
ever, requires the controller verification procedure be differentiable, which is
not supported by reachability analyzers such as Flow∗. To overcome this chal-
lenge, our algorithm effectively estimates the gradients of LD based on random
search [34]. Given a closed-loop environment M δ[πθ], at each training iteration,
we obtain perturbed systems M δ[πθ+νω] and M δ[πθ−νω] where we add sampled
Gaussian noise ω to the current controller πθ’s parameters θ in both directions
and ν is a small positive real number. By evaluating the abstract correctness
losses of the symbolic rollouts of M δ[πθ+νω] and M δ[πθ−νω], we update θ with
a finite difference approximation along an unbiased estimator of the gradient:

∇θLD ←
1

N

N∑
k=1

(
LD(M δ[πθ+νωk ], ψ)−LD(M δ[πθ−νωk ], ψ)

)
ν

ωk
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We update controller parameters θ as follows where η is a learning rate:

θ ← θ − η · ∇θLD

Our high-level controller synthesis algorithm is depicted in Algorithm. 1. The
algorithm takes as input an environment model M δ[·], a rollout specification ψ,
and a programmatic controller π learned using the programmatic reinforcement
learning technique [38]. When verification fails (line 4), it uses the correctness
loss of the symbolic rollout of M δ[π] for optimization (line 8-9). The algorithm
repeatedly performs the gradient-based update until a verified controller is syn-
thesized. As the controller verification procedure is undecidable in general, it is
possible that Algorithm 1 converges with a nonzero correctness loss. Our empir-
ical results in Sec. 5 demonstrate that the algorithm works well in practice.

5 Experimental Results

We have implemented the verification-guided controller synthesis technique in
Algorithm 1 in a tool called VEL (VErification-based Learning) [50]. Given an
environment and a rollout specification ψ (Definition 2), VEL uses the program-
matic reinforcement learning algorithm [38] to learn a programmatic controller
π. The controller π is trained to satisfy the safety and reachability requirements
as set by ψ. We do so by shaping a reward function that is consistent with ψ -
this function rewards actions leading to goal states and penalizes actions leading
to unsafe states. As the RL algorithm does not provide any correctness guaran-
tees and the verification procedure may introduce large approximation errors,
even well-trained controllers may fail verification. In case of verification failures,
VEL applies Algorithm 1 to optimize π based on the verification feedback.

We evaluated VEL on several nonlinear continuous or hybrid systems taken
from the literature. These are problems that are widely used for evaluating state-
of-the-art verification tools for learning-enabled cyber-physical systems. Bench-
marks B1 - B5 were introduced by [18]; adaptive cruise control (ACC) was pre-
sented in [43]; mountain car (MC) and quadrotor with model-predictive control
(QMPC) were introduced by [28]; Pedulum and CartPole were taken from [29];
Tora and Unicyclecar were presented in the ARCH-COMP21 competition on
formal verification of Artificial Intelligence and Neural Network Control Sys-
tems (AINNCS). We present the dynamics and the detailed description of each
benchmark in [50]. The rollout specifications (Definition 2) are depicted in Ta-
ble 1. The specifications define for each benchmark the initial states, the goal
regions to reach, and the safety properties describing the safety boundary or
the obstacles to avoid. On three benchmarks we verify the controller correctness
over an infinite horizon. For the classic control problem Pendulum, to verify
that the pendulum does not fall in an infinite time horizon, the rollout spec-
ification requires that any rollout starting from the region x1, x2 ∈ [−0.1, 0.1]
(representing pendulum angle and angular velocity) eventually turns back to it
and any rollout states must be safe (including those that temporarily leave this
region). Similarly, Tora models a moving cart attached to a wall with a spring.
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Table 1: Benchmark Rollout Specifications (T represents True).
Tasks Rollout Specifications

B1

x1 ∈ [.8, .9] ∧ x2 ∈ [.5, .6] reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3]

ensuring x1, x2 ∈ [−1.5, 1.5]

B2

x1 ∈ [.7, .9] ∧ x2 ∈ [.7, .9] reach x1 ∈ [−.3, .1] ∧ x2 ∈ [−.35, .5]

ensuring x1, x2 ∈ [−1.5, 1.5]

B3 x1 ∈ [.8, .9] ∧ x2 ∈ [.4, .5] reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3] ensuring T

B4

x1, x3 ∈ [.25, .27] ∧ x2 ∈ [.08, .1]

reach x1 ∈ [−.3, .1] ∧ x2 ∈ [−.35, .5] ensuring T

B5

x1 ∈ [.38, .4] ∧ x2 ∈ [.45, .47] ∧ x3 ∈ [.25, .27]

reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3] ensuring T

Oscillatorinf

x1 ∈ [−.51,−.49] ∧ x2 ∈ [.49, .51] reach x1, x2 ∈ [−.05, .05]
ensuring x1 ≤ −.3 ∨ x1 ≥ −.25 ∨ x2 ≤ .2 ∨ x2 ≥ .35,

x1, x2 ∈ [−.05, .05] reach x1, x2 ∈ [−.05, .05]
ensuring x1 ≤ −.3 ∨ x1 ≥ −.25 ∨ x2 ≤ .2 ∨ x2 ≥ .35

ACC
x1 ∈ [90, 110] ∧ x2 ∈ [32, 32.05] ∧ x4 ∈ [10, 11] ∧ x5 ∈ [30, 30.05]

reach −x1 + x4 − 102 ≤ 0 ensuring −x1 + 1.4 · x2 + x4 + 10 ≤ 0

MountainCar x1 ∈ [−.6,−.4] reach x1 > .45 ensuring x1 ≤ .15 ∨ x2 ≥ .25 ∨ x2 ≥ .02

QMPC
.025 ≤ x1 ≤ .05 ∧ 0 ≤ x2 ≤ .025 reach T

ensuring −.32 ≤ x1, x2, x3 ≤ .32

Penduluminf x1, x2 ∈ [−.1, .1] reach x1, x2 ∈ [−.1, .1] ensuring x1, x2 ∈ [−π
2
, π
2

]

CartPole

x1, x2, x3, x4 ∈ [−.05, .05] reach T
ensuring x1 ∈ [−2.4, 2.4] ∧ x2 ∈ [−.21, .21]

UnicycleCar

x1 ∈ [9.5, 9.55] ∧ x2 ∈ [−4.5,−4.45] ∧ x3 ∈ [2.1, 2.11] ∧ x4 ∈ [1.5, 1.51] reach

x1 ∈ [−.6, .6] ∧ x2 ∈ [−.2, .2] ∧ x3 ∈ [−.06, .06] ∧ x4 ∈ [−.3, .3] ensuring T

Tora

x1 ∈ [−.77,−.75] ∧ x2 ∈ [−.45,−.43] ∧ x3 ∈ [.51, .54] ∧ x4 ∈ [−.3,−.28]

reach x1 ∈ [−.1, .2] ∧ x2 ∈ [−.9, .6] ensuring x1, x2, x3, x4 ∈ [−1.5, 1.5]

Torainf

x1, x2, x3, x4 ∈ [−.1, .1] reach x1, x2, x3, x4 ∈ [−.1, .1]

ensuring x1, x2, x3, x4 ∈ [−1.5, 1.5]

On Torainf, we prove that the controller for the arm of the cart connecting to
the spring can stabilize the cart over an infinite horizon while maintain safety
around the origin. On Oscillatorinf, we verify that the controller can stabilize
the oscillator around a target region over an infinite horizon while the process
of reaching the target region from the initial states is safe.

The experimental results are given in Table 2. VEL synthesized provably
correct programmatic controllers for all the benchmarks. Table 2 shows the total
time spent on each benchmark (T.T) as well as the verification time of the final
controller (V.T). Half of the benchmarks can be directly verified with the initial
programmatic controller (in Table 2, T.T for these benchmarks is empty as
they only need one pass of verification in V.T). The other half must go through
the verification-guided controller learning loop due to approximation errors in
verification although these controllers achieved satisfactory test performance. We
depict the learning performance of VEL on these benchmarks in Fig. 3 averaged
over 5 random seeds. The results show that VEL can robustly and reliably reduce
the correctness loss over symbolic rollouts (i.e. the verification feedback) to zero.
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Table 2: Experiment Results. Depth shows the height of the abstract syntax tree
of a programmatic controller. T.T shows the overall execution time of VEL in-
cluding both the time for reachability analysis and verification-guided controller
synthesis. V.T measures only the verification time for the final controller. If a
controller can be verified directly without verification-guided optimization, the
value of T.T is empty. The execution times for ReachNN∗ and Verisig measure
the cost of verifying a neural network controlled system (NNCS). The notation
of the size (n× k) indicates a neural network (with sigmoid activations) with n
hidden layers and k neurons per layer. If a property could not be verified, it is
marked as Unknown. N/A means that the tool is not applicable to a benchmark.

VEL (ours) NNCS

Task Depth V.T T.T Size ReachNN∗ Verisig

B1 2 27.32s 86.57s 2× 20 69s 49s

B2 2 0.25s - 2× 20 32s Unknown

B3 2 1.96s - 2× 20 130s 47s

B4 2 0.63s - 2× 20 20s 12s

B5 2 0.64s 2.01s 3× 100 31s 196s

Oscillatorinf 2 1.74s 25.72s 2× 20 Unknown Unknown

ACC 3 5.56s 196.03s 3× 20 Unknown 1512s

MountainCar 3 233.45s - 2× 16 N/A 52s

QMPC 5 2.21s 16.54s 2× 20 N/A 697s

Penduluminf 2 0.95s - 3× 64 57s Unknown

CartPole 3 8.97s - 2× 64 Unknown Unknown

Unicycle 3 0.75s 16.52s 3× 20 N/A Unknown

Tora 2 3.71s - 3× 20 Unknown 83s

Torainf 2 0.86s 150.86s 3× 20 Unknown Unknown

Table 2 also shows the results of verifying the benchmarks as neural net-
work controlled systems (NNCS) using two state-of-the-art verification tools
ReachNN∗ [18] and Verisig [28] where the controllers are trained as neural net-
works. We note that VEL is designed for programmatic controllers and uniquely
has a verification-guided learning loop. Here our intention is not to compare
the tools’ performance. Instead, Table 2 demonstrates that integrating verifica-
tion in training loops for programmatic controllers is more tractable than for
neural network controllers. It shows that programmatic controller verification
(column V.T) has a much lower computation cost compared to verifying neu-
ral network controllers using ReachNN∗ and Verisig except for MountainCar2.
When ReachNN∗ and Verisig produces Unknown, the tools are not able to verify
the rollout specification due to the large estimated approximation errors in ver-
ification. On Tora, ReachNN∗ spent over 13000s to produce imprecise flowpipes
with large approximation errors that cannot be used for verification. In this case,
repeatedly conducting neural network controller verification in a learning loop is

2 MountainCar is a hybrid system model. VEL is not yet optimized for hybrid system
verification.
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Fig. 3: Learning Performance of Verification-guided Controller Synthesis on B1,
UnicycleCar, QMPC, Oscillator, ACC, and Torainf. The y-axis records the cor-
rectness loss of symbolic rollouts over abstract states. The results are averaged
over 5 random seeds. VEL reliably reduces the symbolic rollout correctness loss
to zero across the learning loop iterations (the x axis) for each benchmark.

computationally infeasible. On the other hand, VEL makes verification-guided
controller synthesis feasible as evidenced in Table 2 and Fig. 3. It efficiently uses
the programmatic controller verification feedback to reduce the correctness loss
over the abstraction of controller reachable states to 0 in the verification proof
space (even if the abstraction may introduce approximation errors).

6 Related Work

Robust Machine Learning. Our work on using abstract interpretation [14]
for controller synthesis is inspired by the recent advances in verifying neural
network robustness, e.g. [23,5,40,51]. These approaches apply abstract inter-
pretation to relax nonlinearity of activation functions in neural networks into
convex representations, based on linear approximation [52,51,39,40,55] or in-
terval approximation [26,35]. Since the abstractions are differentiable, neural
networks can be optimized toward tighter concertized bounds to improve veri-
fied robustness [35,7,55,48,33]. Principally, abstract interpretation can be used to
verify the reachability properties of nonlinear dynamics systems [30,37,4]. Recent
work [43,28,41,18,17,29,13] has already achieved initial results about verifying
neural network controlled autonomous systems by conducting reachability anal-
ysis. However, these approaches do not attempt to leverage verification feedback
for controller synthesis within a learning loop partially because of the high com-
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putation demand of repeatedly verifying neural network controllers. VEL demon-
strates the substantial benefits of using verification feedback in a proof space for
learning correct-by-construction programmatic controllers. Related works [25,16]
conduct trajectory planning from temporal logic specifications but do not pro-
vide formal correctness guarantees. Extending VEL to support richer logic spec-
ifications is left for future work.
Safe Reinforcement Learning. Safe reinforcement learning is a fundamental
problem in machine learning [36,45]. Most safe RL algorithms form a constraint
optimization problem by specifying safety constraints as cost functions in addi-
tion to reward functions [1,9,15,31,42,54,53]. Their goal is to train a controller
that maximizes the accumulated reward and bound the aggregate safety violation
under a threshold. However, aggregate safety costs do not support reachability
constraints in the Safe RL context. In contrast, VEL ensures that a learned con-
troller be formally verified correct and can better handle reachability constraints
beyond safety. Model-based safe learning is combined with formal verification
in [22] where an environment model is updated as learning progresses to take
into account the deviations between the model and the actual system behavior.
We leave combing VEL and model-based learning in future work.
Safe Shielding. The general idea of shielding is to use a backup controller to
enforce the safety of a deep neural network controller [3]. The backup controller
is less performant than the neural controller but is safe by construction using
formal methods. The backup controller runs in tandem with the neural controller.
Whenever the neural controller is about to leave the provably safe state space
governed by the backup controller, the backup controller overrides the potentially
unsafe neural actions to enforce the neural controller to stay within the certified
safe space [2,11,21,22,24,56,6,32]. In contrast, VEL directly integrates formal
verification into controller learning loops to ensure that learned controllers are
correct-by-construction and hence eliminates the need for shielding.

7 Conclusion

We present VEL that bridges formal verification and synthesis for learning
correct-by-construction programmatic controllers. VEL integrates formal veri-
fication into a controller learning loop to enable counterexample-guided con-
troller optimization. VEL encodes verification feedback as a loss function of the
parameters of a programmatic controller over the verification proof space. Its
optimization procedure iteratively reduces both controller correctness violation
by true counterexamples and overapproximation errors caused by abstraction.
Our experiments demonstrate that controller updates based on verification feed-
back can lead to provably correct programmatic controllers. For future work,
we plan to extend VEL to support controller safety during exploration in noisy
environments. When a worst-case environment model is provided, this can be
achieved by repeatedly leveraging the verification feedback on safety violation to
project a controller back onto the verified safe space [12] after each reinforcement
learning step taken on the parameter space of the controller.
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Data-Availability Statement VEL is available at the repository [50]. The in-
structions for reproducing our experiment results are included in this repository.
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12. Chow, Y., Nachum, O., Faust, A., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: Safe
policy learning for continuous control. In: Kober, J., Ramos, F., Tomlin, C.J.
(eds.) 4th Conference on Robot Learning, CoRL 2020, 16-18 November 2020, Vir-
tual Event / Cambridge, MA, USA. Proceedings of Machine Learning Research,
vol. 155, pp. 801–821. PMLR (2020)

13. Christakis, M., Eniser, H.F., Hermanns, H., Hoffmann, J., Kothari, Y., Li, J.,
Navas, J.A., Wüstholz, V.: Automated safety verification of programs invoking
neural networks. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 12759, pp. 201–224.
Springer (2021)

14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238–252 (1977)
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