
Abstraction Refinement-guided Program Synthesis for Robot
Learning from Demonstrations

GUOFENG CUI, Rutgers University, USA
YUNING WANG, Rutgers University, USA
WENSEN MAO, Rutgers University, USA
YUANLIN DUAN, Rutgers University, USA
HE ZHU, Rutgers University, USA

Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems.

However, due to the complex architectures of neural network models, ensuring their trustworthiness is a

considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach to improve

interpretability by using domain-specific programs to represent RL models. Nonetheless, synthesizing robot-

control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated

with user-defined state abstraction predicates and a library of low-level controllers (e.g., raising a robot’s end

effector up) as abstract actions to boot synthesis, which is impractical in unknown environments that lack such

predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement

guided program synthesis framework that automatically derives robot state and action abstractions from raw,

unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines

an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment.

RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from

the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental

results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary

numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.

1 Introduction

(a) Pick&place (b) Push (c) Tower

Fig. 1. Robot environments for various tasks.

Learning-enabled systems, which incorporate machine

learning components to learn from data or sensor in-

puts, are increasingly used in large-scale applications.

In the robotics domain, deep reinforcement learning

(RL) techniques have shown promise in developing in-

telligent agents for robot control, offering robust alter-

natives to analytical models in adaptive control systems.

These methods enable an agent to develop complex

skills through environmental interaction. However, en-

suring the trustworthiness of deep RL systems is challenging due to the intricate nature of neural

network structures, the high dimensionality of data they process, and the unpredictable variations

in real-world environments. To address this, programmatic reinforcement learning has emerged,

focusing on synthesizing domain-specific programs as RL model representations to enhance inter-

pretability [5, 24, 26, 45, 51, 58, 60, 61, 63, 64]. For example, PROLEX [42] and Tabula [44] learn

robot-control programs from task demonstrations, generalizing a specific sequence of high-level

control actions to a general program to solve unseen tasks. A recent work, ReGuS (reward-guided

synthesis) [12], generates robot-control programs directly from reward signals and demonstrates

that synthesizing programs with rich control-flow constructs (e.g., loops) can effectively tackle

long-horizon and sparse-reward tasks that often confound deep RL techniques.

Authors’ Contact Information: Guofeng Cui, gc669@cs.rutgers.edu, Rutgers University, USA; Yuning Wang, yw895@rutgers.

edu, Rutgers University, USA; Wensen Mao, wm300@rutgers.edu, Rutgers University, USA; Yuanlin Duan, yuanlin.duan@

rutgers.edu, Rutgers University, USA; He Zhu, hz375@cs.rutgers.edu, Rutgers University, USA.

HTTPS://ORCID.ORG/0000-0002-7994-915X
HTTPS://ORCID.ORG/0009-0000-4317-9758
HTTPS://ORCID.ORG/0000-0002-2696-2668
HTTPS://ORCID.ORG/0000-0001-9606-150X
https://orcid.org/0000-0002-7994-915X
https://orcid.org/0009-0000-4317-9758
https://orcid.org/0000-0002-2696-2668
https://orcid.org/0000-0001-9606-150X

2 Trovato et al.

State and Action Abstraction. Prior work that scales program synthesis techniques to high-

dimensional robotics environments with continuous state and action spaces often crafts a domain-

specific language (DSL) integrating state abstraction predicates and abstract control actions. To
illustrate the need for abstraction, consider the Pick&Place robot task shown in Fig. 1a, where a

manipulator must pick up a block (green) from a table and place it in a target position (sphere) in

mid-air. The robot used is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper.

The robot’s state space includes kinematic information of the block and the end effector including

the Cartesian coordinates of the desired final block position. Its action space represents the Cartesian

displacement of the end effector to set to and the positional displacement of each finger of the

gripper. Directly generating programs in a high-dimensional continuous space poses significant

challenges for a synthesizer due to the complexity and nature of the space involved.

while(not At(𝑏, 𝑔)):
if (Above(𝑏)):
if (Near(𝑏)):
if (Holding(𝑏)):
move(𝑔)

else:
closeGripp()

else:
openGripp()
if(not Near(𝑏)):
moveDown()

else:
move(𝑏)

Fig. 2. Synthesized pro-
gram for pick&place by
ReGuS [12].

State abstraction predicates [2, 17] construct a higher-level represen-

tation of the robot’s environment based on observed sensor data. This

higher-level representation can then be reasoned about using standard

language constructs, such as loops and conditionals, to trigger suitable

actions from a current state. An abstract action 𝑐 is an application of

a low-level skill of the robot. These skills can be derived from either

robot APIs or pre-trained neural network controllers. Conceptually,

skills are modular and reusable, and can be likened to building blocks

or subroutines that contribute to the overall control policy of the robot

in diverse contexts. For example, for Pick&Place, ReGuS [12] involves
state abstraction predicates Near (indicates if the gripper is close to the

block 𝑏), Holding (indicates if the gripper is holding 𝑏), Above (indicates
if the gripper is above 𝑏), and At (indicates if 𝑏 is in the goal region

𝑔 ∈ R3
) into the DSL used to search a program to address this task. The

DSL also includes a set of abstract actions to operate the robot in the continues environment for

openGripp(), closeGripp(), moveUp(), moveDown(), move(𝑔) that moves the gripper to a goal

region 𝑔. ReGuS synthesizes a program, as shown in Fig. 2, that guides the robotic gripper to

move above the block 𝑏 in the environment, lower to grab it, and then transport the block to the

designated goal area 𝑔.

Challenges Faced by Existing Approaches. Several challenges remain in advancing robot-

control program synthesis in real-world scenarios.

• (i) A crucial bottleneck in existing synthesis techniques is the reliance on manually designed

state abstraction predicates and action abstraction in a DSL to bootstrap synthesis. High-quality

abstractions ensure that programs synthesized from them can be executed successfully in the

real environment but often require significant human effort and domain knowledge to customize

effectively. For example, the state and action abstractions for the Pick&place task described

above cannot be applied to a robot with a push-only gripper as visualized in the Push task in

Fig. 1b. This type of gripper is designed to apply force to reposition objects on a surface, but it

cannot grasp or lift them. Automatically learning state and action abstractions has been a key

area of research in task and motion planning for robot control [6, 21, 27, 41]. Existing techniques

often have significant limitations, as they either learn predicates from demonstrations while

assuming that low-level controllers are already available [13, 34, 53], or learn low-level controllers

from demonstrations while assuming that the necessary predicates are predefined [1, 15, 52].

Simultaneous discovery of both state abstraction predicates and abstract actions remains a

significant challenge [32, 52, 53].

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 3

• (ii) Existing approaches encounter difficulties when synthesizing programs that generalize to

tasks involving repeated subroutines or arbitrary numbers of objects, such as directing a robot

arm to stack scattered objects into a pyramid. These tasks often require complex control-flow

structures like state-conditioned loops. When a domain-specific language (DSL) with predefined

state abstraction and low-level controllers is available, as in existing work, this complexity is

reduced. For example, in PROLEX [42], task demonstrations are represented as sequences of

calls to user-defined low-level controllers rather than continuous, raw actions in the robot’s

operational space. This representation enables it to deduce when and how these controllers are

employed repeatedly or conditionally. Consequently, it can extract high-level control structures,

such as loops and conditional statements, from observed tasks. Synthesizing loop programs

for robot control in high-dimensional, continuous state and action spaces without predefined

abstractions is still a major hurdle.

Fig. 3. Overview of the RoboScribe framework.

This Paper. To make program syn-

thesis feasible for high-dimensional,

continuous state and action spaces

in robotic environments, our main

idea is to develop abstraction re-
finement techniques that automati-

cally generates appropriate state and

action abstractions as part of the syn-

thesis process. To this end, we de-

velop RoboScribe, a novel abstrac-
tion refinement-guided program syn-
thesis framework. RoboScribe is visualized in Fig. 3 and is based on the following two key ideas:

(1) Comparative Abstraction Refinement: To overcome challenge (i), RoboScribe iteratively
refines an initially coarse abstraction of the robot environment until a valid program capable

of solving the task is synthesized from the abstract environment. The initial coarse abstraction

differentiates only between states that havemet the (unknown) goal condition𝜓𝑅 in the environment

and those that have not:

True { 𝜓𝑅

under the assumption that a single low-level controller as the target program can be learned to

transition all possible initial states (True) to the goal condition (𝜓𝑅). In the context of pick&place,
the initial abstraction only identifies goal states where the block is successfully placed at the target

position. If this assumption fails, RoboScribe incrementally learns state abstraction predicates that

capture critical intermediate states toward task completion. For example, in the pick&place task,

the robot must move its gripper close to the block, grasp it, and lift it to a designated position.

By learning state abstraction predicates that identify such key subgoal states and abstract actions

as low-level controllers that transition the agent across these subgoals, RoboScribe accurately

captures the task’s hierarchical structure. We posit that state abstraction predicates can be learned if

demonstrations showing task completion are provided to the synthesizer. Systematically comparing

states within these demonstrations to those observed during failed robot behaviors which are

learned in the real environment allows RoboScribe to discern necessary intermediate states in

the demonstrations pivotal for the task’s success. For pick&place, a low-level controller trained
to fulfill𝜓𝑅 may struggle with grasping the block first, as exemplified in the program execution

behavior shown in Fig. 3. Leveraging insights gained from successful demonstrations, RoboScribe

refines the abstraction with a predicate 𝜑 that captures the states where the robot’s gripper is

4 Trovato et al.

positioned close to the block:

True { 𝜑 { 𝜓𝑅

The refined abstraction adds a crucial step that bridges the initial and goal states, breaking down

the complex task into manageable subtasks. This process is recursively conducted, enabling the

task to be eventually solved through a series of progressively refined subtasks that lead to𝜓𝑅 .

(2) Iterative-Program Learning: To address challenge (ii), RoboScribe leverages state abstraction
predicates learned on-the-fly to identify repeating subroutines within demonstrations. For instance,

consider the Tower task of manipulating a robot arm to stack blocks into a tower visualized in Fig. 1c.

Key state abstraction predicates for subgoals like grasping a block and lifting it to a specific position,

learned for handling one block, recur throughout the demonstration for handling other blocks.

RoboScribe exploits repeated subgoal predicates in demonstrations to construct the loop body that

guides the agent through transitions between the subgoals vian abstract actions in the form of

low-level controllers. However, the order in which recurring objects are addressed across loop

iterations remains unspecified. This ordering is crucial in tasks like Tower, where placing a block
in the goal position before positioning the underlying blocks leads to failed outcomes. RoboScribe

synthesizes a predicate that identifies the correct object order by analyzing the rationale behind

the demonstrations, explaining why certain objects are handled before others. In a nutshell, to

synthesizing programs that generalize to tasks involving arbitrary numbers of objects, RoboScribe

first constructs a loop program skeleton, then fills in an object ordering predicate as the loop guard

to determine the sequence for handling objects, and finally optimizes action abstractions to ensure

robust generalization across all loop iterations.

Evaluation. We implemented RoboScribe and evaluated it using a benchmark suite of complex

robot object manipulation tasks. Experimental results demonstrate that RoboScribe programs can

inductively generalize to long-horizon tasks involving arbitrary numbers of objects, outperforming

baseline methods in both interpretability and efficiency. For example, the programmatic agent

synthesized by RoboScribe can efficiently use a robot arm to stack multiple blocks on a cluttered

tabletop into a tower, a task known for its complexity in RL due to the need to handle long-horizon

planning and precise manipulation [30, 39]. The agent can generalize to unseen configurations,

such as placing blocks into multiple towers with zero-shot success.

Contributions. To summarize, this paper makes the following key contributions:

• Wepropose RoboScribe, a novel abstraction refinement technique that automatically derives robot

state and action abstractions from raw, unsegmented task demonstrations to enable robot-control

program synthesis in high-dimensional, continuous spaces.

• We develop an effective loop program synthesis algorithm that scales RoboScribe to long-horizon

tasks involving unbounded environment objects. The algorithm excels in inferring repeating

subroutines directly from demonstrations in the robot’s raw, continuous state and action spaces.

• We evaluate RoboScribe in complex robot manipulation tasks, highlighting its effectiveness in

learning and generalizing control strategies.

2 Overview
In this section, we motivate the problem and provide an overview of our approach.

2.1 Key Assumptions
Object-centric Views. Following common practice in robotics [25, 31, 50, 55, 56, 66], RoboScribe

assumes that the robot receives an object-centric view {𝝁, 𝒆1, . . . , 𝒆𝑵 } at each timestep (defined

in Sec. 3). This view segments the world into discrete objects and classifies them into categories

based on sensor data, where 𝝁 represents the robot’s end effector and 𝒆𝒊 denotes an entity in the

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 5

Type 𝜏 ::= {EE, block, handle,mug, faucet, . . .} Variable 𝑉 ::= 𝜇, 𝑣

Expression 𝛼 ::= 𝜇 | 𝑣 | 𝑔(𝑣) | 𝛼 ↓𝑥,𝑦,𝑧 | 𝛼 ↓𝑥,𝑦 | 𝛼 ↓𝑥 | 𝛼 ↓𝑦 | 𝛼 ↓𝑧 | 𝛼 − 𝛼 | ∥𝛼 ∥ | arctan2(𝛼)
Predicate 𝑃 ::= 𝛼 < 𝛼 | 𝛼 < 𝜙 | 𝛼 > 𝜙 | 𝛼 ≠ 𝑛𝑢𝑙𝑙 | true | ¬𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | ∃𝑣 . 𝑃

Action 𝑐 ::= 𝜋𝜃1 (𝜇, {𝑣}, 𝑔({𝑣 ′})) | 𝜋𝜃2 (𝜇, {𝑣}, 𝑔({𝑣 ′})) | . . . 𝜋𝜃𝑖 ∈ ΠNN

Statement 𝑆 ::= while (𝑃) {𝑆} | if (𝑃) 𝑆1 else 𝑆2 | 𝑆1; 𝑆2 | 𝑣 := get(𝜆𝑣 : 𝜏 . 𝑃) | 𝑐
Program ::= def P (𝜇 : EE) : 𝑆

Fig. 4. The Context-free grammar for the RoboScribe DSL L, where EE refers to the robot’s end effector.

environment. Each object 𝝁 or 𝒆𝒊 is associated with attributes such as its class and 3D position.

Such views can be constructed using e.g. object detection [35, 36, 48] or discovery [16, 33] methods.

Goal-Directed Robot Tasks. We consider goal-directed robotic tasks where a goal function 𝒈
maps entities 𝑒𝑖 to their target regions. For each control task, 𝒈 may be randomly generated. For

example, in the Pick&Place task (Fig. 1a), the goal region (green sphere) can be randomly placed

within the robot’s workspace. The robot’s objective is defined by a predicate 𝝋𝑹 , which is true

when a designated subset of entities has reached their final target poses and false otherwise—e.g.,

an entity is considered to have reached its goal if its distance to the target is below a threshold. In

RoboScribe, the agent does not require the analytical form of 𝝋𝑹 but can query it to verify whether

a state 𝑠 satisfies 𝝍𝑹 .

Demonstrations. We assume that we can utilize supervision of a limited amount of task

demonstrations for robot-control program synthesis. RoboScribe only assumes unsegmented task

demonstrations as sequences of states (𝑠0, 𝑠1, . . . , 𝑠𝐻) where 𝑠0 is an initial state and each state 𝑠𝑖 at

timestep 𝑖 presents an object-centric view of the system (i.e., a collection of objects in the scene

and their attributes). For each demonstration, we assume that𝜓𝑅 (𝑠𝐻) is true.

2.2 Program and Domain-Specific Language
RoboScribe synthesizes robot-control programs using a generic DSL L in Fig. 4. In a program, the

variable 𝜇 binds to the robot’s end effector and a variable 𝑣 binds to an object 𝑒𝑖 in the robot’s

object-centric view, with its type 𝜏 determined by the object it references. Each object has attributes,

such as its 3D pose estimated from sensors, denoted 𝑣 ↓𝑥,𝑦,𝑧 , where ↓ extracts attribute values from
the object referenced by 𝑣 . In Fig. 4, we enumerate attributes related to position in R3

, but the DSL

can be extended to include full attributes, including orientation, such as quaternions. As discussed

in Sec. 2.1, leveraging the goal function 𝑔, 𝑔(𝑣) represents the goal region of the object referenced

by 𝑣 , and ∥·∥ represents the Euclidean norm.

State abstraction predicates 𝑃 in L enable the robot to locate relevant objects, constructing a

higher-level representation of its environment. The parameter 𝜙 in our predicates is a constant

(vector) that must be learned. Our DSL supports existential quantifiers ∃𝑣 in predicates 𝑃 to identify

objects meeting specific criteria, such as blocks below a certain height. Predicates can be used to

define spatial relationships (e.g., using ∥·∥) and physical orientations (e.g., using arctan2) among

environment objects, including the robot itself. For instance, arctan2 can be used to encode

alignment constraints between the end effector, a block, and its goal region for direct pushing.

Abstract actions 𝑐 represent low-level controllers that encode the robot’s capabilities in contin-

uous environments. Each abstract action 𝑐 ∈ ΠNN is a deep neural network policy 𝜋𝜃 with trainable

parameters 𝜃 . The policy 𝜋𝜃 is goal-conditioned. It takes as input the attribute values of the end

effector 𝜇 and some objects referenced by {𝑣}, as well as the goal regions of some objects referenced

by {𝑣 ′}, producing a control action suitable for execution in the raw environment.

6 Trovato et al.

Our DSL L also includes state-conditioned loops and conditional statements. The assignment
statement 𝑣 := get(𝜆𝑣 : 𝜏 . 𝑃) binds variable 𝑣 to an object 𝑒𝑖 of type 𝜏 in the robot’s object-centirc

view such that 𝑃 [𝑒𝑖/𝑣] holds. A RoboScribe program P is a function that takes a binding to the

robot’s end effector as input and executes a defined statement as its body.

It is important to highlight that the RoboScribe DSL L does not include predefined low-level

controllers. The set of low-level controllers ΠNN starts out empty. The synthesis process

inherently involves learning appropriate state abstraction predicates 𝑃 and constructing abstract
control actions ΠNN as a fundamental component.

2.3 Demonstration-directed Robot Environment Abstraction Refinement
Key Insight. Our key idea is to systematically compare states within successful task demonstrations

with those from failed robot behaviors learned in the real environment, aiming to identify key

subgoal states that are essential for task success.

Comparative Abstraction Refinement. We define a robot task T as T : True { 𝜓𝑅 with the

expected behavior of directing the robot to transition from arbitrary initial states True (underlying

some unknown initial environment state distribution) to states that satisfy the goal condition𝜓𝑅 .

The initial abstraction True { 𝜓𝑅 is coarse, distinguishing only between successful states that meet

the goal condition𝜓𝑅 and those that have not yet reached it, and assumes that a single low-level

controller 𝜋𝜓𝑅
can fully solve the task. RoboScribe attempts to learn 𝜋𝜓𝑅

using an off-the-shelf deep

RL algorithm driven by a task reward function that assigns a reward of 1.0 to any state 𝑠 where

𝜓𝑅 (𝑠) is true and 0 otherwise. In this sparse reward setting, trajectories induced by 𝜋𝜓𝑅
often fail to

encounter any positive feedback, resulting in learning failure. RoboScribe compares the successful

behavior given in a set of demonstrations D with that of the learned controller to identify key

differences that are essential for enabling task success.

Fig. 5. Pick&place Demonstration.

For example, in the pick&place demonstra-

tion shown in Fig. 5, The end effector (referred

to as the robot 𝜇 for simplicity) first holds the

block and then places it on the target. How-

ever, the learned 𝜋𝜓𝑅
struggles with grasping

the block due to the absence of an explicit learn-

ing signal for this action. We extract states pre-

ceding successful task completion from demonstrations, forming a set 𝑃𝑠 = {𝑠𝑡 | 𝑠𝑡 ̸ |= 𝜓𝑅∧𝑠𝑡+1 |= 𝜓𝑅},
and compare them with states 𝑁𝑠 collected from the learned controller’s trajectories. RoboScribe

synthesizes a state abstraction predicate to distinguish 𝑃𝑠 and 𝑁𝑠 to learn what prerequisite con-

ditions are necessary for reaching𝜓𝑅 . We learn state abstraction predicates 𝑃 derivable from the

grammar in our DSL L in Fig. 4 based on Decision Tree (DT) learning. A DT is a binary tree that

represents a Boolean formula. Each leaf of the tree is labeled either positive or negative for a subset

of the samples in 𝑃𝑠 ∪ 𝑁𝑠 . Each inner node is labeled by a decision of the form 𝛼 ≤ 𝜙 where 𝛼

is a feature and 𝜙 is a (learned) threshold. In our context, 𝛼 is an expression derivable from the

production rules for 𝛼 in L. We formalize the learning algorithm in Sec. 4.2.1. In this example,

RoboScribe may learn a predicate hold(𝜇, 𝑏) ≡

𝜇 ↓𝑥,𝑦,𝑧 −𝑏 ↓𝑥,𝑦,𝑧

 ≤ 𝜙 that defines states where a

block 𝑏 is being grasped by the robot gripper 𝜇. Here, 𝑏 references to the block in the environment.

Using this learned predicate, we refine the initial abstraction as:

True { hold(𝜇, 𝑏) { 𝜓𝑅 (1)

which effectively decomposes the task into subtasks: (1) T1 : True { hold(𝜇, 𝑏) for reaching states
where the block is grasped, and (2) T2 : hold(𝜇, 𝑏) { 𝜓𝑅 for achieving the goal condition after

grasping the block. This process is recursively conducted until the task can be solved through

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 7

a series of progressively refined subtasks to 𝜓𝑅 . For example, for T2, RoboScribe may further

learn a predicate at(𝑏,𝑔(𝑏)) capturing states where the block is at the goal region, along with

two subtasks: T21 : hold(𝜇, 𝑏) { at(𝑏,𝑔(𝑏)) for moving the block towards its goal region, and

T22 : at(𝑏,𝑔(𝑏)) { 𝜓𝑅 for maintaining the block in the target position of the task, resulting in the

following refined abstraction:

True { hold(𝜇, 𝑏) { at(𝑏,𝑔(𝑏)) { 𝜓𝑅 (2)

Abstract Subtask Tree. RoboScribe structures environment abstractions as abstract subtask

trees, formalized in Sec. 4. Each tree node 𝜑 or𝜓 encodes a state abstraction predicate that defines a

subgoal condition. Each (inverted) tree edge𝜑 { 𝜓 represents an abstract action, to be grounded as a

low-level controller in the real environment, that fulfills the subtask of transitioning any state within

𝜑 to a subgoal state in𝜓 , guiding the agent toward the completion of its overall task goal condition

𝜓𝑅 at the root of the tree. Tree representations effectively capture the structure of multi-goal tasks

involving multiple objects, providing a clear framework for task decomposition and execution.

To satisfy a subgoal 𝜓 , the agent must complete all the subgoals of its predecessors 𝜑 such that

𝜑 { 𝜓 . Each subgoal 𝜑 in the predecessors of𝜓 corresponds to the manipulation of a distinct object.

𝜓𝑅

align(ℎ,𝑔(𝑏))

latch(𝜇, ℎ)

near(𝜇, ℎ)

True

{
{

{

{
at(𝑏,𝑔(𝑏))

hold(𝜇, 𝑏)

True

{
{

{

Fig. 6. Abstract Subtask Tree for PlaceCubeDrawer.

For example, consider the PlaceCubeDrawer
task depicted in Fig. 6 left. The goal of the

Sawyer robot in this task is to pick up a

cube 𝑏 from the desk of a cabinet and

place it inside the drawer below. The ab-

stract subtask tree for this task is shown

in Fig. 6 (right). The agent must complete

the following subtasks: first moving the

gripper 𝜇 near the cabinet door handle

ℎ, latching the handle, pulling it to align

with the goal position 𝑔(𝑏) for the cube
𝑏, and then holding 𝑏 before placing it

inside the drawer at 𝑔(𝑏).
def PPick&place (𝜇 : EE):
𝑏 := get(𝜆𝑏 : block. true);
𝜋𝑔𝑟𝑎𝑠𝑝 (𝜇,𝑏)

[
ℎ𝑜𝑙𝑑 (𝜇,𝑏)

]
;

𝜋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝜇,𝑏, 𝑔 (𝑏))
[
𝑎𝑡 (𝑏,𝑔 (𝑏))

]
Fig. 7. Synthesized program for
pick&place by RoboScribe.

Program Learning. From an abstract environment defined by

an abstract subtask tree𝑇 , RoboScribe synthesizes a robot-control

program P. First, we note that P can be derived by recursively

traversing 𝑇 and chaining the subtasks. Each abstract action is

grounded as a neural network controller 𝜋 that uses the attributes

of the involved objects as input to generate low-level robot actions.

In P, each controller 𝜋 runs until its corresponding subgoal con-

dition is met. We depict the synthesized program for pick&place
in Fig. 7 where the shorthand notations in the program represent loops:

𝜋 (𝜇, {𝑣}, {𝑔(𝑣)}) [𝜑] ≡ while not(𝜑)
{
𝜋 (𝜇, {𝑣}, {𝑔(𝑣)})

}
Second, to learn each low-level controller 𝜋𝜑 in P for reaching states that satisfy its subgoal

condition 𝜑 , we iteratively execute P and store trajectories from 𝜋𝜑 in a replay buffer 𝐵𝜑 . During

gradient updates, RoboScribe trains 𝜋𝜑 by sampling from 𝐵𝜑 and optimizing it with an off-the-shelf

off-policy RL algorithm. Paricularly, we use learned state abstraction predicates to provide dense

reward signals for training low-level controllers. Dense reward functions are shaped systematically

from predicates combined in arbitrary Boolean forms. For example, in Fig. 5, to train a controller

for the subtask T21 : hold(𝑔,𝑏) { at(𝑏,𝑔(𝑏)), a dense reward function can be derived from the

norm learned for at(𝑏,𝑔(𝑏)), encouraging the robot to move its end effector closer to 𝑔(𝑏) with
higher rewards for proximity.

8 Trovato et al.

Fig. 8. Demonstration and partition for the Tower task.

2.4 Synthesizing Iterative Robot-Control Programs
While the synthesis strategy described in Sec.2.3 is applicable to multi-object tasks, it does not

generalize well when scaling up to handle long-horizon tasks with varying numbers of objects.

The abstraction method lacks the flexibility to capture the relationships and dependencies between

an indefinite number of objects, particularly when coordination and sequencing are required. For

example, in the Tower task shown in Fig.8, the goal is to synthesize a program P for a robot arm to

stack a variable number of scattered blocks into a tower. Such tasks demand programs that can

iteratively manage multiple instances of subtasks.

Key Challenge. Synthesizing iterative programs is challenging because it requires effective

strategies for discovering repetitive subroutines and handling the complex dependencies between

them. Unlike prior work (e.g. PROLEX [42] and Tabula [44]), RoboScribe does not assume predefined

state and action abstraction and must be able to extract repetitive structures from demonstration

trajectories within the robot’s high-dimensional, continuous state and action spaces.

Key Insight. Our key idea is to leverage abstraction predicates learned on-the-fly to discover

repetitive subroutines in demonstrations. During comparative abstraction refinement, when classify-

ing states from task demonstrations and robot trajectories to learn new state abstraction predicates,

RoboScribe identifies opportunities to reuse previously discovered predicates and their correspond-

ing low-level controllers, as a means to uncover abstract repetitions within demonstrations.

Discovering Repetitive Subtasks. As shown in the learned abstraction for the Pick&place task
in Eq. 2, RoboScribe can identify a state abstraction predicate 𝑎𝑡 (𝑏,𝑔(𝑏)) as a subgoal for placing
one block 𝑏 at its target and develop a routine of low-level controllers to achieve it. However, the

task remains incomplete as additional blocks must still be placed. Using a single low-level controller

for this would be insufficient as illustrated in Sec. 2.3. RoboScribe identifies that the predicate

𝑎𝑡 (𝑏,𝑔(𝑏)), interpreted with 𝑏 as implicitly existentially quantified, can be reused to distinguish

demonstration states where blocks are near their targets from unsuccessful single-policy attempts

to complete the full task. It refines the abstraction in Eq.2 by defining a circular abstract subtask

tree node to indicate this repetition:

True { hold(𝜇, 𝑏) { 𝑎𝑡 (𝑏,𝑔(𝑏)) { 𝜓𝑅 (3)

This implies that the control strategy for achieving ∃𝑏. 𝑎𝑡 (𝑏,𝑔(𝑏)) for some block𝑏 can be iteratively

applied to handle remaining objects of the same type in the environment that have yet to meet this

subgoal condition.

Learning Iterative Programs. RoboScribe synthesizes a loop structure for each circular abstract
subtask tree node. This leads to an iterative Tower program PTower shown in Fig. 9, which intends to

stack all the blocks on a table in a sequence, generated from the task abstraction in Eq. 3. However,

determining the order in which blocks should be addressed within the sequence (among the loop

iterations) remains unspecified. This ordering is particularly significant as placing a block in its

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 9

goal position without first positioning the underlying blocks leads to failed outcomes. RoboScribe

places a missing hole ??𝑝 in the loop condition designated to specify an effective handling sequence

in Fig. 9.

def PTower (𝜇 : EE):
while

((
𝑏 := get

(
𝜆𝑏 : block. ??𝑝

))
≠ 𝑛𝑢𝑙𝑙

)
:

𝜋𝑔𝑟𝑎𝑠𝑝 (𝜇,𝑏)
[
ℎ𝑜𝑙𝑑 (𝜇,𝑏)

]
𝜋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏,𝑔 (𝑏))

[
𝑎𝑡 (𝑏,𝑔 (𝑏))

]
Fig. 9. Iterative program PTower
for Tower with a missing hole for
the loop condition.

def PPick&place (𝜇 : EE):
while

((
𝑏 := get

(
𝜆𝑏 : block. ¬𝑎𝑡 (𝑏,𝑔 (𝑏))∧

¬∃𝑏′ .𝑔 (𝑏′) ↓𝑧< 𝑔 (𝑏) ↓𝑧 ∧¬𝑎𝑡 (𝑏′, 𝑔 (𝑏′))
))

≠ 𝑛𝑢𝑙𝑙
)
:

𝜋𝑔𝑟𝑎𝑠𝑝 (𝜇,𝑏)
[
ℎ𝑜𝑙𝑑 (𝜇,𝑏)

]
𝜋𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑏,𝑔 (𝑏))

[
𝑎𝑡 (𝑏,𝑔 (𝑏))

]
Fig. 10. Synthesized iterative program
PTower for Tower.

Loop Condition Syn-
thesis. Conceptually, we
can enumerate candidates

to fill in the missing

predicate ??𝑝 based on

the predicate production

rules 𝑃 defined in our

DSL L (Fig. 4) and exe-

cute PTower in the real en-

vironment to empirically determine which predicate maximizes task performance, such as higher

success rates. However, this approach is computationally prohibitive due to the extensive predicate

search space of the DSL and the long-horizon nature of robot tasks that involve recurring objects.

Additionally, training the low-level neural controllers in PTower depends on executing the program

to obtain training data, resulting in a mutual dependency problem where loop condition synthesis

and controller learning are interdependent. Our strategy circumvents these limitations by inferring

the ordering predicate ??𝑝 directly from demonstrations, avoiding the need for executing PTower
in the real environment. Specifically, RoboScribe synthesizes an ordering predicate for ??𝑝 that

determines the correct sequence of object handling by analyzing the rationale in the demonstrations,

explaining why certain objects are handled before others, such as why the red block is placed after

the green and yellow blocks in Fig. 8. From demonstrations, RoboScribe learns such a predicate

by enumerating predicates derivable from the production rules for 𝑃 in the DSL L (see Fig. 4). In

this process, we augment 𝑃 with learned state abstraction predicates from abstract subtask trees

as these predicates provide additional task-relevant constraints. We defer the formalization of the

synthesis algorithm to Sec. 4.2.1. For Tower, RoboScribe synthesizes the following predicate for an

effective handling sequence :

¬𝑎𝑡 (𝑏,𝑔(𝑏)) ∧ ¬∃𝑏′ .𝑔(𝑏′) ↓𝑧< 𝑔(𝑏) ↓𝑧 ∧¬𝑎𝑡 (𝑏′, 𝑔(𝑏′)) (4)

which specifies that any block with a lower goal position must be placed before the current block.

The termination condition ensures that once all blocks are in their goal positions, there are no

further blocks to handle. The full program synthesized is given in Fig. 10.

3 Problem Setup
We study a learning paradigm where the agent can interact with many entities (objects) in an

environment. The task for the agent is specified in the form of goals for the entities. We formalize

it using the Entity-Factored Markov Decision Process (EFMDP) [65].

Throughout the paper, we use {𝑣} to denote a list. For a function 𝑓 , we define element-wise

application as 𝑓 ({𝑣}) = {𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑛)}.
Entity-Factored Markov Decision Process. An EFMDP with 𝑁 entities is described by the

tuple:M := ⟨Λ,O = {𝜇, 𝑒1, . . . , 𝑒𝑁 },S,G,A, P, 𝜂⟩. Here, Λ is a finite set of object types, e.g., cube

and mug, and O is a finite set of objects, where 𝜇 and {𝑒1, . . . , 𝑒𝑁 } are the agent (robot) and the

entities, respectively. Each entity in O has a type drawn from Λ. Each object in O has an associated

set of attributes drawn from a finite set F = {𝑓1, 𝑓2, . . . , 𝑓𝑀 }, for example, spatial coordinates

{𝑥,𝑦, 𝑧} in the 3D space. A state 𝑠 in the state space S is a function 𝑠 : O → D where D is the space

of object descriptors, formally defined as D = (F → R). This means that each object 𝑜 ∈ O is

mapped to a function that assigns a real value to each attribute. For an object 𝑜 ∈ O, 𝑠 (𝑜) retrieves

10 Trovato et al.

𝛼 ::= 𝜇 | 𝑒𝑖 | 𝑔(𝑒𝑖) | 𝛼 ↓𝑥,𝑦,𝑧 | 𝛼 ↓𝑥,𝑦 | 𝛼 ↓𝑥 | 𝛼 ↓𝑦 | 𝛼 ↓𝑧 | 𝛼 − 𝛼 | ∥𝛼 ∥ | arctan2(𝛼)
𝜓 ::= 𝛼 < 𝛼 | 𝛼 < 𝜙 | 𝛼 > 𝜙 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝜓 ∨ 𝜓 | ∃𝑜. 𝜓

Fig. 11. Task Specifications of EFMDPs over objects O = {𝜇, 𝑒1, . . . , 𝑒𝑁 }.

the object descriptor of 𝑜 , i.e., 𝑠 (𝑜) : F → R, and 𝑠 (𝑜, {𝑓 }) extracts the real values of the attributes
{𝑓 } ⊆ F , i.e., 𝑠 (𝑜, {𝑓 }) = (𝑠 (𝑜)) ({𝑓 }). We use dom(𝑠) to retrieve the set of objects within a state 𝑠 .

We sometimes abuse notation for convenience to use 𝑠 (𝑜) to refer to the full set of attribute values

for 𝑜 , i.e., the image of 𝑠 (𝑜) under F .
The goal space of an EFMDPM is denoted as G. A goal command𝑔 ∈ G is a function (introduced

in Sec. 2.1) 𝑔 : O → D that defines the goal region for entities {𝑒1, . . . , 𝑒𝑁 }. Typically, 𝑔(𝑒𝑖) only
maps a subset of 𝑒𝑖 ’s attributes to a real value, specifying its desired placement. For instance, in

Fig. 1, the goal regions (spheres) indicate the target positions for each block within the 3D space.

In an EFMDPM, A is the robot’s action space. The system dynamics ofM is described by a

probabilistic state transition function P(𝑠′ |𝑠, 𝑎) for 𝑠, 𝑠′ ∈ S and 𝑎 ∈ A, i.e., the robot’s action can

update the object states in its environment. The set of the initial states of an EFMDP is specified

by 𝜂 : S → R≥0 (i.e., 𝜂 (𝑠) is the probability density of the initial state being 𝑠). A trajectory of an

EFMDP 𝜁 ∈ 𝑍 is a sequence 𝜁 = 𝑠0
𝑎0−→ 𝑠1

𝑎1−→ · · · , where 𝑠𝑖 ∈ S and 𝑎𝑖 ∈ A, where 𝑠𝑖+1 ∼ P(· | 𝑠𝑖 , 𝑎𝑖).
EFMDPs can model several applications, including tabletop manipulation and scene reconfiguration.

At the same time, the EFMDP contains more structure and symmetry compared to the standard

MDP model, which can enable more efficient learning and better generalization [65].

Task Specification. We define predicates𝜓 used for robot task specifications of an EFMDP, as

shown in Fig. 11, over the set of objects O = {𝜇, 𝑒1, . . . , 𝑒𝑁 } within. The operator ↓ extracts attribute
values from 𝑜 ∈ O. The semantics of the predicates J𝜓K are given in Fig. 12. Given a state 𝑠 , we define
𝜑 (𝑠) as J𝜑K(𝑠), representing the truth value of the predicate 𝜑 in state 𝑠 . We say that a trajectory

𝜁 = 𝑠0
𝑎0−→ 𝑠1

𝑎1−→ · · · , 𝑠𝐻 satisfies a task specification T : 𝜑 { 𝜓 , denoted as 𝜁 |= T : 𝜑 { 𝜓 , if

𝜓 (𝑠𝐻) holds when 𝜑 (𝑠0) holds. A task specification T : True { 𝜓𝑅 for an EFMDPM defines the

intended behavior in the MDP. Starting from any possible initial EFMDP state 𝑠0 ∼ 𝜂 (·), the agent is
expected to reach a state 𝑠 that satisfies𝜓𝑅 (𝑠). For example, for the Tower task in Fig. 1c involving

the end effector 𝜇 and four blocks O = {𝜇, 𝑏1, 𝑏2, 𝑏3, 𝑏4}, its specification can be defined as:

TTower : True {
4∧

𝑖=1

𝑏𝑖 ↓𝑥,𝑦,𝑧 − 𝑔(𝑏𝑖)

 < 𝜙 ∧ 𝑏4 ↓𝑧< 𝜇 ↓𝑧

This specifies that all blocks must be placed in their goal regions, and the end effector must leave the

top block. In this paper, we use𝜓𝑅 to denote the predicate encoding the task’s final goal region, while

𝜓 and 𝜑 typically represent intermediate subgoal conditions inferred by our algorithm. Predicates

𝜓 defined over EFMDP objects O align with predicates 𝑃 in the DSL L, which are defined over

program variables 𝑉 binding EFMDP objects. This alignment allows inferred subgoal conditions to

be lifted into program predicates. Thus, we use𝜓 and 𝑃 interchangeably to refer to state abstraction

predicates, based on the context.

Program Synthesis for Policy Learning. Given an EFMDPM with unknown state transition

probabilities and task specification T : True { 𝜓 , RoboScribe synthesizes a program P∗ as a
controller in the DSL L in Fig. 4 to fulfill T . We outline the DSL operational semantics ⟨𝑆, 𝜌, 𝑠⟩ ⇓
(𝜌 ′, 𝑠′) in Fig. 13. Formally, 𝑆 is a program statement in Fig. 4, 𝜌 : 𝑉 → O is an environment

mapping that binds program variables 𝑉 to objects in O. For a program variable 𝑣 ∈ 𝑉 , at a given

state 𝑠 , 𝑠 (𝜌 (𝑣)) extracts the attribute values for the object referenced by 𝑣 in 𝑠 . Define Exec(M, P)
an interpreter that evaluates P in the EFMDPM based on the operational semantics and returns

the EFMDP trajectory starting from a randomly sampled initial state 𝑠0 ∼ 𝜂 (·). Exec terminates as

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 11

Expressions Predicates
J𝛼K(𝑠) = J𝜓K(𝑠) =

𝑠 (𝜇), if 𝛼 = 𝜇

𝑠 (𝑒𝑖), if 𝛼 = 𝑒𝑖

𝑔(𝑒𝑖), if 𝛼 = 𝑔(𝑒𝑖)
𝑠 (J𝛼1K(𝑠), {𝑥,𝑦, 𝑧}), if 𝛼 = 𝛼1 ↓𝑥,𝑦,𝑧
J𝛼1K(𝑠) − J𝛼2K(𝑠), if 𝛼 = 𝛼1 − 𝛼2
∥J𝛼1K(𝑠)∥, if 𝛼 = ∥𝛼1∥
arctan2(J𝛼1K(𝑠)), if 𝛼 = arctan2(𝛼1)



J𝛼1K(𝑠) < J𝛼2K(𝑠), if𝜓 = 𝛼1 < 𝛼2

J𝛼K(𝑠) < 𝜙, if𝜓 = 𝛼 < 𝜙

J𝛼K(𝑠) > 𝜙, if𝜓 = 𝛼 > 𝜙

¬J𝜓1K(𝑠), if𝜓 = ¬𝜓1
J𝜓1K(𝑠) ∧ J𝜓2K(𝑠), if𝜓 = 𝜓1 ∧𝜓2
J𝜓1K(𝑠) ∨ J𝜓2K(𝑠), if𝜓 = 𝜓1 ∨𝜓2∨

𝑖J𝜓1 [𝑜 ↦→ 𝑒𝑖]K(𝑠), if𝜓 = ∃𝑜.𝜓1

Fig. 12. Semantics of task specifications of EFMDPs over objects O = {𝜇, 𝑒1, . . . , 𝑒𝑁 }.

⟨𝑆1, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′)
⟨𝑆2, 𝜌′, 𝑠′⟩ ⇓ (𝜌′′, 𝑠′′)
⟨𝑆1; 𝑆2, 𝜌, 𝑠⟩ ⇓ (𝜌′′, 𝑠′′)

⟨𝑃, 𝜌, 𝑠⟩ ⇓ true
⟨𝑆1, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′)

⟨if(𝑃) 𝑆1 else 𝑆2, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′)

⟨𝑃, 𝜌, 𝑠⟩ ⇓ false
⟨𝑆2, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′)

⟨if(𝑃) 𝑆1 else 𝑆2, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′)

⟨𝑃, 𝜌, 𝑠⟩ ⇓ true ⟨𝑆, 𝜌, 𝑠⟩ ⇓ (𝜌′, 𝑠′) ⟨while(𝑃) {𝑆}, 𝜌′, 𝑠′⟩ ⇓ (𝜌′′, 𝑠′′)
⟨while(𝑃) {𝑆}, 𝜌, 𝑠⟩ ⇓ (𝜌′′, 𝑠′′)

⟨𝑃, 𝜌, 𝑠⟩ ⇓ false
⟨while(𝑃) {𝑆}, 𝜌, 𝑠⟩ ⇓ (𝜌, 𝑠)

𝑜 : 𝜏 ∈ dom(𝑠) ⟨𝑃, 𝜌 [𝑣 ↦→ 𝑜], 𝑠⟩ ⇓ true
⟨𝑣 := get(𝜆𝑣 : 𝜏 . 𝑃), 𝜌, 𝑠⟩ ⇓ (𝜌 [𝑣 ↦→ 𝑜], 𝑠)

∀𝑜 : 𝜏 ∈ dom(𝑠) . ⟨𝑃, 𝜌 [𝑣 ↦→ 𝑜], 𝑠⟩ ⇓ false
⟨𝑣 := get(𝜆𝑣 : 𝜏 . 𝑃), 𝜌, 𝑠⟩ ⇓ (𝜌 [𝑣 ↦→ 𝑛𝑢𝑙𝑙], 𝑠)

𝑎 ∼ 𝜋𝜃
(
𝑠 (𝜌 (𝜇)), 𝑠 (𝜌 ({𝑣})), 𝑔(𝜌 ({𝑣 ′}))

)
𝑠′ ∼ P(·| 𝑠, 𝑎)

⟨𝜋𝜃 (𝜇, {𝑣}, 𝑔({𝑣 ′})), 𝜌, 𝑠⟩ ⇓ (𝜌, 𝑠′)

⟨𝛼, 𝜌, 𝑠⟩ ⇓ 𝑢
⟨𝛼 < 𝜙, 𝜌, 𝑠⟩ ⇓ 𝑢 < 𝜙

⟨𝛼, 𝜌, 𝑠⟩ ⇓ 𝑢
⟨𝛼 ≠ 𝑛𝑢𝑙𝑙, 𝜌, 𝑠⟩ ⇓ 𝑢 ≠ 𝑛𝑢𝑙𝑙

⟨𝑃1, 𝜌, 𝑠⟩ ⇓ 𝑏1 ⟨𝑃2, 𝜌, 𝑠⟩ ⇓ 𝑏2
⟨𝑃1 ∧ 𝑃2, 𝜌, 𝑠⟩ ⇓ 𝑏1 ∧ 𝑏2

⟨𝑃, 𝜌, 𝑠⟩ ⇓ 𝑏
⟨¬𝑃, 𝜌, 𝑠⟩ ⇓ ¬𝑏

𝑜 : 𝜏 ∈ dom(𝑠) ⟨𝑃, 𝜌 [𝑣 ↦→ 𝑜], 𝑠⟩ ⇓ true
⟨∃𝑣 : 𝜏 . 𝑃, 𝜌, 𝑠⟩ ⇓ true

∀𝑜 : 𝜏 ∈ dom(𝑠). ⟨𝑃, 𝜌 [𝑣 ↦→ 𝑜], 𝑠⟩ ⇓ false
⟨∃𝑣 : 𝜏 . 𝑃, 𝜌, 𝑠⟩ ⇓ false

𝜌 (𝑣) ∈ dom(s)

⟨𝑣, 𝜌, 𝑠⟩ ⇓ 𝜌 (𝑣)

𝜌 (𝑣) ∈ dom(s)

⟨𝑔(𝑣), 𝜌, 𝑠⟩ ⇓ 𝑔(𝜌 (𝑣))
⟨𝛼, 𝜌, 𝑠⟩ ⇓ 𝑜 𝑜 ∈ dom(𝑠)
⟨𝛼 ↓𝑥,𝑦,𝑧 , 𝜌, 𝑠⟩ ⇓ 𝑠 (𝑜, {𝑥,𝑦, 𝑧})

⟨𝛼1, 𝜌, 𝑠⟩ ⇓ 𝑢1 ⟨𝛼2, 𝜌, 𝑠⟩ ⇓ 𝑢2
⟨𝛼1 − 𝛼2, 𝜌, 𝑠⟩ ⇓ 𝑢1 − 𝑢2

Fig. 13. The DSL L operational semantics in RoboScribe.

soon as a specification-satisfying state is encountered. The learning objective is to synthesize P∗:
P∗ = argmax

P∈L
Pr

𝜁∼Exec(M,P)
[𝜁 |= T : True { 𝜓𝑅] (5)

In practice, to evaluate task success, we define P∗ |=M,𝜖 True { 𝜓𝑅 meaning that finite-length

trajectories sampled from Exec(M, P) empirically satisfy the goal condition𝜓𝑅 with a probability

of at least 1 − 𝜖 . The values for the maximum trajectory length and 𝜖 are user-configurable.

4 Abstraction Refinement-guided Robot Control Program Synthesis
We present the core algorithms for the abstraction refinement-guided synthesis strategy in Robo-

Scribe. We first provide the top-level synthesis algorithm, and then describe its key components.

12 Trovato et al.

4.1 Top-level Algorithm

Algorithm 1 The RoboScribe Procedure

1: procedure RoboScribe(M, L, D, True { 𝜓𝑅)

2: 𝑇 ← (𝑁 = {𝑢True, 𝑢𝜓𝑅
}, 𝐸 = {𝑢True → 𝑢𝜓𝑅

}, 𝜓𝑅)
3: P∗,𝑇 ∗ ← synthesize(M, L, D, 𝑇 ,𝜓𝑅)

4: return P∗

The top-level RoboScribe algorithm

is presented in Algorithm 1. It

takes as input an EFMDP M =

{Λ,O,S,G,A, P, 𝜂}, the DSL L (de-

fined in Fig. 4), a set of task demon-

strations D, and a task specification

True { 𝜓𝑅 . The DSL L does not
predefine useful state and action abstractions, which are yet to be learned as part of the
synthesis process. The objective is to synthesize a program P∗ in L that satisfies the specification

True { 𝜓𝑅 (Eq. 5). As in conventional RL settings, the goal condition𝜓𝑅 is unknown to RoboScribe.

However, the agent can use𝜓𝑅 as a black box to query whether any state encountered 𝑠 satisfies𝜓𝑅 .

Abstract Subtask Trees. During its synthesis procedure, RoboScribe maintains state and action

abstraction of a robot environment as an abstract subtask tree𝑇—a hierarchical representation that

encodes the sequence and relationships among subtasks for reaching the task’s goal states.

Definition 4.1 (Abstract Subtask Tree). An Abstract Subtask Tree 𝑇 = (𝑁, 𝐸,𝜓𝑅) is a tuple:
• 𝑁 is a set of nodes, each representing a state abstraction predicate, denoted by 𝜑 or 𝜓 , which

defines a subset of the EFMDP state space. Throughout the paper, we use the terms predicate 𝜑

and tree node 𝑢𝜑 interchangeably.

• 𝐸 ⊆ 𝑁 ×𝑁 is a set of directed edges between nodes, with each edge 𝑢𝜑 → 𝑢𝜓 ∈ 𝐸 representing a

subtask 𝜑 { 𝜓 of the overall task, which transitions the agent from states characterized by 𝜑 to

states in𝜓 , In the following, we also use edge 𝑢𝜑 → 𝑢𝜓 and subtask 𝜑 { 𝜓 interchangeably.

• 𝜓𝑅 ∈ 𝑁 is the root node, encapsulating the goal states of the overall task.

In an abstract subtask tree, state abstraction predicates on the tree nodes serve as decomposition

of a complex robotic task. Tree edges represent abstract actions to transition between key subgoals.

A tree path (True { 𝜑1 { 𝜑2 { . . . { 𝜓𝑅) in 𝑇 , leading toward the goal states at the root, is

a sequence of subtasks, guiding the agent from one subtask to the next until the whole task is

complete. The tree is inverted, for any node with multiple predecessors, the agent is directed to

execute subtasks associated with each predecessor node, recursively. Fig. 6 displays the abstract

subtask tree for a multi-object environment.

Initial Environment Abstraction. In Algorithm 1, at line 2, RoboScribe creates the initial

environment abstraction as an abstract subtask tree 𝑇 with two nodes 𝑢True and 𝑢𝜓𝑅
corresponding

to the set of all possible initial states and environment states that satisfy the unknown goal condition.

The edge 𝑢True → 𝑢𝜓𝑅
represents a controller that satisfies the task specification True { 𝜓𝑅 . At

line 3, Algorithm 1 invokes the Synthesize procedure (detailed in Algorithm 2) to iteratively

refines the coarse initial abstraction by need into a hierarchy of subtasks, continuing until a valid

task-solving program is obtained within the abstracted environment.

4.2 The Main Synthesis Procedure
Synthesis Rules.We describe the Synthesize procedure using the synthesis rules of the following

shape:

M,L,D,𝑇 ⊢ (P∗,𝑇 ∗) : 𝜓
whereM, L, D are the task EFMDP, our DSL (Fig. 4), and the task demonstrations respectively. 𝑇

is an initial abstract subtask tree. The rule specifies the refinement of 𝑇 into a valid abstraction

𝑇 ∗, which can then be converted into a program P∗ whose execution fulfills the goal condition𝜓 .

Fig. 14 depicts the synthesis rules. Both rules rely on a procedureM,D,𝑇 ⊲ P that synthesizes a

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 13

Policy

M,D,𝑇 ⊲ P P |=M,𝜖 True { 𝜓

M,L,D,𝑇 ⊢ (P,𝑇) : 𝜓

Refinement

M,D,𝑇 ⊲ P P ̸|=M,𝜖 True { 𝜓 𝑃𝑠 ← {𝑠𝑡 | 𝑠𝑡 ̸ |= 𝜓 ∧ 𝑠𝑡+1 |= 𝜓 ∧ {𝑠𝑡 , 𝑠𝑡+1} ∈ D}
𝑁𝑠 ← {𝜁 ∼ Exec(M,P)} 𝜑 ∈ L ∧ 𝜑 (𝑠) = 1 for 𝑠 ∈ 𝑃𝑠 ∧ 𝜑 (𝑠) = 0 for 𝑠 ∈ 𝑁𝑠

M,L,D,𝑇 [True
𝜑
{ 𝜓] ⊢ (P′,𝑇 ′) : 𝜑 M,L,D,𝑇 ′ ⊢ (P′′,𝑇 ′′) : 𝜓
M,L,D,𝑇 ⊢ (P′′,𝑇 ′′) : 𝜓

Fig. 14. The RoboScribe Synthesis Procedure

Algorithm 2M, L, D,𝑇 ⊢ (P′′,𝑇 ′′) : 𝜓 The Main Synthesis Procedure

1: procedure Synthesize(M, L, 𝐷 , 𝑇 ,𝜓)
2: P ← GenProgram(M, D, 𝑇)

3: if P |=M,𝜖 True { 𝜓 then
4: return P, 𝑇
5: else
6: 𝑃𝑠 ← {𝑠𝑡 | 𝑠𝑡 ̸ |= 𝜓 ∧ 𝑠𝑡+1 |= 𝜓 ∧ {𝑠𝑡 , 𝑠𝑡+1} ∈ D}
7: 𝑁𝑠 ← {𝜁 ∼ Exec(M,P)}
8: 𝜑 ← LearnClassifier(𝑃𝑠 , 𝑁𝑠 , L, 𝑇 ,𝜓)
9: 𝑇 ← UpdateTree(𝑇 , [True

𝜑
{ 𝜓])

10: P′,𝑇 ′ ← Synthesize(M, L, 𝐷 , 𝑇 , 𝜑)
11: P′′,𝑇 ′′ ← Synthesize(M, L, 𝐷 , 𝑇 ′,𝜓)
12: return P′′,𝑇 ′′

program P from the abstracted environment 𝑇 and ground the abstract actions in P as low-level

neural controllers in the real environmentM. We defer the discussion of this procedure to Sec. 4.3.

The Policy rule applies when the program P derived from the abstract subtask tree𝑇 can directly

satisfy the specification, i.e., P |=M,𝜖 True { 𝜓 (we set 1 − 𝜖 as a lower bound for the probability

of task success). In this case, the rule directly outputs (P, 𝑇) as the synthesized solution. The

Refinement rule, on the other hand, addresses cases where the program P generated from 𝑇 does

not fully solve the task. Here, our key idea is to systematically compare states within successful

task demonstrations with those from failed behaviors by the program P executed in the real

environment, aiming to identify pivotal states that are essential for enabling task success. As stated

in the Refinement rule, RoboScribe extracts states just before task success from demonstrations,

forming a set 𝑃𝑠 = {𝑠𝑡 | 𝑠𝑡 ̸ |= 𝜓 ∧ 𝑠𝑡+1 |= 𝜓 }, and compares them with states 𝑁𝑠 from the learned

controller’s trajectories to learn what prerequisite conditions are necessary. RoboScribe synthesizes

a state abstraction predicate 𝜑 ′ to distinguish between 𝑃𝑠 and 𝑁𝑠 , refining the abstraction 𝑇 by

breaking down the task True { 𝜓 , which results in a new abstract subtask tree 𝑇 [True
𝜑
{ 𝜓]

that adds 𝜑 as an intermediate subgoal for𝜓 in 𝑇 (formalized in Sec. 4.2.2). We hypothesize that

having learned how to achieve 𝜑 by the synthesized program P′ from 𝜑 , it is an easier task for the

agent to learn a program P′′ based on P′ to achieve the goal condition𝜓 . Notably, the Refinement
rule embodies a recursive task decomposition process to repeatedly refine an initially coarse

abstraction until a valid task-solving program can be obtained. Algorithm 2 operationalizes the

synthesis rules in a recursive function Synthesize. At line 8 and line 9, the Synthesize function

14 Trovato et al.

Algorithm 3 𝜑 ∈ L s.t. 𝜑 (𝑠) = 1 for 𝑠 ∈ 𝑃𝑠 , 𝜑 (𝑠) = 0 for 𝑠 ∈ 𝑁𝑠 : Learn a classifier for 𝑃𝑠 and 𝑁𝑠

1: procedure LearnClassifier(𝑃𝑠 , 𝑁𝑠 , L, 𝑇 ,𝜓)
2: if ∃𝜑. 𝜑 { 𝜓 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑃𝑠 . ExistQuant(𝜑) (𝑠)∧∀𝑠 ∈ 𝑁𝑠 . ¬(ExistQuant(𝜑)) (𝑠) then
3: return 𝜑

4: else
5: Exp𝛼 ← L(𝛼)
6: 𝜑 ← LearnDecisionTree(Exp𝛼 , 𝑃𝑠 , 𝑁𝑠)
7: return 𝜑

invokes LearnClassifier and UpdateTree for state abstraction refinement. We formalize these

two procedures below, starting with key notations.

Given a predicate𝜓 over EFMDP objects O = {𝜇, 𝑒1, . . . , 𝑒𝑁 } (defined in Fig. 11), let Entities(𝜓) ⊆
{𝑒1, . . . , 𝑒𝑁 } denote the set of entity variables that appear free in𝜓 . We define the transformation:

ExistQuant(𝜓) := ∃𝑒 ∈ Entities(𝜓). 𝜓
which lifts entity variables 𝑒1, . . . , 𝑒𝑁 appearing in𝜓 free existentially quantified.

4.2.1 Learning State Abstraction Predicates
We illustrate the state abstraction predicate learning procedure LearnClassifier in Algorithm 3.

It takes as input 𝑃𝑠 the set of states prior to the states that satisfy a goal or subgoal condition

𝜓 in the demonstration D, 𝑁𝑠 the set of states along the agent’s behavior that failed to reach 𝜓 ,

the DSL L, the abstract subtask tree 𝑇 representing the current environment abstraction, and𝜓 ,

aiming to learn a state abstraction predicate capturing what should have been achieved by the

agent in order to enable reaching states in 𝜓 . At line 2, the algorithm checks whether the state

abstraction predicate 𝜑 from any existing predecessor of𝜓 can be reused to distinguish 𝑃𝑠 and 𝑁𝑠

through ExQuant(𝜓). For example, in the Tower task described in Sec. 2.4, once the state abstraction

predicate 𝑎𝑡 (𝑏,𝑔(𝑏)) is identified as a subgoal for placing a block 𝑏 at its target and a corresponding

subroutine of controllers is learned, the task remains incomplete as additional blocks still require

positioning. The existentially quantified predicate ∃𝑏. 𝑎𝑡 (𝑏,𝑔(𝑏)) helps distinguish demonstration

states where blocks are correctly positioned near their targets from failed attempts by a single

controller struggling to complete the task.

If reusing an existing predicate is not possible, in Algorithm 3, LearnClassifier synthesizes

a decision tree (DT) at line 6 to separate 𝑃𝑠 and 𝑁𝑠 using features from expressions 𝛼 derived

from the production rules in our task specification language in Fig. 11. The hypothesis set of

LearnDecisionTree consists of Boolean combinations of predicates of the form 𝛼 ≤ 𝜙 , with 𝜙

being a constant threshold, which are learned during training. Standard DT learning algorithms

begin with an empty tree, greedily selecting features that maximize information gain, and continue

until all leaves are labeled with a single class. Finally, the learned DT is converted to a predicate 𝜑 .

4.2.2 Refining Abstract Subtask Trees
With the learned classifier 𝜑 as a prerequisite for achieving 𝜓 in a task True { 𝜓 , UpdateTree

refines the abstract subtask tree 𝑇 by using 𝜑 as a subgoal to decompose the task. We specify this

refinement procedure 𝑇 [True
𝜑
{ 𝜓] in Algorithm 4. At line 2, if the newly identified subtask goal

predicate 𝜑 matches an existing subtask goal 𝜑 ′ that precedes 𝜓 in 𝑇 (i.e., the LearnClassifier

procedure has opted to reuse 𝜑 ′), a repeating subroutine is effectively recognized. This means that

the controllers designed to achieve 𝜑 ′ for manipulating some objects can be repurposed to solve

the subtask to reach 𝜑 for a different set of objects of the same type. The algorithm marks 𝑢𝜑 ′ as a

circular node 𝜑 ′ at line 4 to indicate this repetition - the control strategy used to reach 𝜑 ′ should

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 15

Algorithm 4 𝑇 [True
𝜑
{ 𝜓]: Update an abstract subtask tree 𝑇 = (𝑁, 𝐸,𝜓𝑅)

1: procedure UpdateTree(𝑇 , [True
𝜑
{ 𝜓])

2: if ∃𝜑 ′ . 𝜑 ′ { 𝜓 ∈ 𝑇 ∧ 𝜑 ′ ≡ 𝜑 then
3: 𝜑 ′ ← ExistQuant(𝜑 ′)
4: 𝑢𝜑 ′ ← 𝜑 ′

5: else if ∃𝜑 ′ . 𝜑 ′ { 𝜓 ∈ 𝑇∧ Entities(𝜑 ′) = Entities(𝜑) then
6: 𝑁, 𝐸 ← 𝑁 ∪ {𝑢𝜑 }, 𝐸 \ {𝑢𝜑 ′ → 𝑢𝜓 } ∪ {𝑢𝜑 ′ → 𝑢𝜑 , 𝑢𝜑 → 𝑢𝜓 }
7: else
8: 𝑁, 𝐸 ← 𝑁 ∪ {𝑢𝜑 }, 𝐸 ∪ {𝑢True → 𝑢𝜑 , 𝑢𝜑 → 𝑢𝜓 }

then be executed iteratively to address recurring objects in the environment that have not yet

satisfied 𝜑 ′. For this purpose, we have made 𝜑 ′ existentially quantified.

An invariant we maintain for an abstract subtask tree 𝑇 is that for each tree node 𝜓 , for any

predecessors 𝜑 { 𝜓 and 𝜑 ′ { 𝜓 , 𝜑 and 𝜑 ′ are subgoal conditions for unique sets of objects, and
hence requiring different control strategies (i.e. unique tree paths towards 𝜑 and 𝜑 ′) and otherwise

they should be collapsed into a circular node. For example, consider the PlaceCubeDrawer task

depicted in Fig.6, which has an abstract subtask tree consisting of two main paths: one for opening

the drawer and the other for placing the cube inside it. During the refinement of 𝑇 [True
𝜑
{ 𝜓],

if a newly identified subgoal 𝜑 targets the same set of entities as an existing predecessor 𝜑 ′ of𝜓
(i.e. Entities(𝜑) = Entities(𝜑 ′)), the UpdateTree procedure in Algorithm4 inserts a new node 𝑢𝜑 ′

between 𝑢𝜑 and 𝑢𝜓 at line 6, establishing 𝜑 ′ as an intermediate subgoal for 𝜑 { 𝜓 . For example, in

the tree refinement illustrated by Equation 2, the predicate at(𝑏,𝑔(𝑏)), which signifies that block 𝑏

is at its goal, is added between the predicate hold(𝜇, 𝑏)—indicating the robot is gripping 𝑏—and𝜓𝑅 ,

the overall task’s goal condition. If 𝜑 involves different set of entities from any existing predecessor

𝜑 ′ of𝜓 , a distinct tree path from 𝑢𝜑 to 𝑢𝜓 is created at line 8, representing distinct objects to control,

as exemplified in the unique two paths in the abstract subtask tree for PlaceCubeDrawer in Fig. 6.

4.3 Synthesizing Robot-Control Programs from Abstract Subtask Trees
An important step in RoboScribe is synthesizing an executable program P from an abstract subtask

tree 𝑇 . We formalize this procedure asM,D,𝑇 ⊲ P, implemented in a procedure GenProgram

described in Algorithm 5. Our main synthesis procedure Synthesize invokes GenProgram in

Algorithm 2 (line 2) to generate a candidate program and does so repeatedly for each refined abstract

subtask tree until a specification-satisfying program can be synthesized.

The GenProgram procedureM,D,𝑇 ⊲ P accomplishes three main objectives as formalized

in Algorithm 5: (1) it constructs the "skeletion" of P based on the hierarchical structure of 𝑇 via

the Tree2Program procedure at line 2. (2) Tree2Program also infers loops within P to handle

varying numbers of objects by detecting repeated patterns in the demonstration D. (3) It grounds

the abstract actions in P as low-level controllers that can solve the subtasks within 𝑇 through the

TrainProgram procedure at line 5. These low-level controllers are neural network policies that

operate directly in the robot environment to control robot actions.

4.3.1 Program Generation
The Tree2Program procedure (Line 8 of Algorithm 5) traverses an abstract subtask tree 𝑇 rooted

at 𝑢𝜑 . It generates a program 𝑃𝑢𝜑 from 𝑇 for solving the task of reaching states satisfying 𝜑 . Here

we assume that in a multi-object setting, task demonstrations implicitly indicate the order in which

multiple objects of different types should be handled (we relax this assumption in Sec. 4.4). For

16 Trovato et al.

Algorithm 5M,D,𝑇 ⊲ P: Synthesize a program P from an abstract subtask tree 𝑇 = (𝑁, 𝐸,𝜓𝑅)
1: procedure GenProgram(M, D, 𝑇)

2: P ← Tree2Program(𝜓𝑅 , D, 𝑇)

3: for all 𝑜 ∈ FreeVars(P) : do
4: P ← {𝑣 := get(𝜆𝑣 : Λ(𝑜) . True)}; P

��
𝑜 ↦→𝑣

⊲ 𝑣 fresh

5: P∗ ← TrainProgram(M, P)
6: return P∗
7:

8: procedure Tree2Program(𝑢𝜑 , D, 𝑇)

9: P𝑢𝜑 ← {}
10: for all edge (𝑒 ≡ 𝑢𝜑 ′ → 𝑢𝜑) ∈ 𝑇 sorted by 𝑖 (D, 𝜑 ′) do
11: P𝑢𝜑′ ← Tree2Program(𝑢𝜑 ′ , D, 𝑇)

12: P𝑢𝜑 ← P𝑢𝜑 ; P𝑢𝜑′

13: if 𝑢𝜑 ≡ ∃𝑜. 𝜑 then ⊲ 𝑢𝜑 induces an iterative procedure

14: 𝑣 ← FreshVar()
15: 𝑝 ← PredicateSynthesis(D, 𝑣, ∃𝑜. 𝜑) ⊲ Loop Condition Synthesis

16: P𝑢𝜑 ← while(𝑣 := get(𝜆𝑣. 𝑝)) {(P𝑢𝜑 ; 𝜋𝜑 [𝜑])
��
𝑜 ↦→𝑣
};

17: else
18: P𝑢𝜑 ← P𝑢𝜑 ; 𝜋𝜑 [𝜑]
19: return P𝑢𝜑

example, in the PlaceCubeDrawer task shown in Fig. 6, the agent must first pull the drawer open

using its handle before placing the cubes inside. Define 𝑖 (D, 𝜑 ′) as the position in the demonstration

where𝜑 ′ holds. Tree2Program enumerates the incoming edges𝑢𝜑 ′ → 𝑢𝜑 of𝑢𝜑 (line 10) in the order

of 𝑖 (D, 𝜑 ′), recursively applying itself to 𝑢𝜑 ′ (line 11), and appending the resulting program 𝑃𝑢𝜑′ to

𝑃𝑢𝜑 (line 12). At line 18, the algorithm appends a low-level controller 𝜋𝜑 = 𝜋𝜃 (𝜇, {𝑜}, {𝑔(𝑜 ′)}), a
neural network policy with trainable weights 𝜃 , to the program 𝑃𝑢𝜑 . This controller guides the agent

from states satisfying the subgoals in the predecessors of 𝑢𝜑 (namely {𝜑 ′}) to states that satisfy 𝜑

in 𝑢𝜑 . Here, {𝑜} = Entities(𝜑) denotes the set of entities involved in 𝜑 , while {𝑔(𝑜 ′)} represents the
goal conditions in𝜑 for these entities, with 𝑜 ′ potentially being a subset of 𝑜 . The controller 𝜋𝜑 needs

to manage the entities in 𝑜 to achieve the subgoal condition 𝜑 . If 𝑢𝜑 is designated as a circular node,

as constructed in Sec. 4.2.2, the subroutine synthesized in P𝑢𝜑 is designed for repeated execution to

handle recurring objects of the same types to achieve 𝜑 in a loop. To simplify the presentation, we

assume a single existential quantifier for the subgoal condition related to 𝑢𝜑 , though the algorithm

trivially extends to multiple quantifiers. We introduce a fresh program variable 𝑣 to bind recurring

objects within the loop. At line 16, Tree2Program constructs a loop with (P𝑢𝜑 ;𝜋𝜑
��
𝑜 ↦→𝑣
) as its body,

replacing 𝑜 in the program with 𝑣 to track recurring objects bound in each iteration, analogous

to existential quantifier instantiation. Fig. 9 illustrates this process for the Tower task. We note

that at Line 4 of Algorithm 5, for any remaining object identifier 𝑜 in a synthesized program P,
we similarly project 𝑜 to a fresh variable 𝑣 and prepend 𝑣 := get(𝜆𝑣 : Λ(𝑜) .True) to P. This allows
the program to generalize across environments by retrieving the appropriate entity, removing

dependencies on specific object identifiers (see Fig. 7 as an example).

So far, the algorithm does not specify the order in which objects are addressed in the loop

iterations, which is crucial for tasks with dependencies, such as Tower (Fig. 8) where placing a

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 17

Algorithm 6 Learning Loop Conditions from Demonstrations

1: procedure PredicateSynthesis(D, 𝑣, 𝜑)

2: for 1 ≤ 𝑖 ≤ 𝑁 do
3: 𝑃𝑖 , 𝑁𝑖 ← {}, {}
4: for each demonstration rollout 𝑑 ∈ D do
5: Let 𝑒1, . . . , 𝑒𝑁 be the objects sorted by the order handled by 𝜑 and

6: 𝑆𝑖 be the partition of 𝑑 in which 𝑒𝑖 is handled

7: for all 𝑒𝑖 do
8: 𝑃𝑖 ← 𝑃𝑖 ∪ {(𝑠𝑡 , 𝑒𝑖) | 𝑠𝑡 ∈ 𝑆𝑖 }
9: for all 𝑆 𝑗 s.t. 𝑗 < 𝑖 do
10: 𝑁𝑖 ← 𝑁𝑖 ∪ {(𝑠𝑡 , 𝑒𝑖) | 𝑠𝑡 ∈ 𝑆 𝑗 }
11: for all 𝑆 𝑗 s.t. 𝑗 > 𝑖 do
12: 𝑁𝑖 ← 𝑁𝑖 ∪ {(𝑠𝑡 , 𝑒𝑖) | 𝑠𝑡 ∈ 𝑆 𝑗 }
13: 𝑃 ← 𝑇𝑟𝑢𝑒

14: for 1 ≤ 𝑖 ≤ 𝑁 do
15: 𝜓 ← TopdownEnum(𝑃𝑖 , 𝑁𝑖)
16: 𝑃 ← 𝑃 ∧ 𝜓 [𝑒𝑖 ↦→ 𝑣]
17: return 𝑃

Fig. 15. Positive and negative examples for learning the predicate for when to handle the red block in Tower.
In the demonstration, the agent stacks green, yellow, red and blue blocks in order.

block in its goal position before positioning the underlying blocks can result in failure. To this

end, Tree2Program invokes PredicateSynthesis in Algorithm 6 to specify an effective handling

sequence for the loop structure. We outline this procedure as follows.

4.3.2 Loop Inference
Our key approach to identifying the potential order for an effective handling sequence for recurring

objects is analyzing the underlying rationale in task demonstrations to understand why certain

objects must be handled before others.

Given the set of demonstrations D and a circular tree node 𝜑 in an abstract subtask tree 𝑇 , the

PredicateSynthesis procedure in Algorithm 6 formalizes the generation of loop conditions for

synthesized iterative programs. Starting from line 5, for each rollout 𝑑 from the demonstrations 𝐷 ,

we sort objects 𝑒1, 𝑒2, . . . of the desired types in 𝑑 according to their order of satisfying 𝜑 in 𝑑 and

partition 𝑑 based on this order. Each partition 𝑆𝑖 represents a subtask period where 𝑒𝑖 is handled in

the demonstrations. For example, for the abstraction of Tower in Eq. 3, given the demonstration

in Fig. 8, we instantiate the existential quantifiers 𝑏 in the circular node ∃𝑏. 𝑎𝑡 (𝑏,𝑔(𝑏)) with the

18 Trovato et al.

colored blocks respectively. The agent stacks the green, yellow, red, and blue blocks sequentially

from bottom to top, resulting in partitions 𝑆1, 𝑆2, 𝑆3 and 𝑆4 in Fig. 8.

For each 𝑒𝑖 , RoboScribe maintains positive examples (𝑠𝑡 , 𝑒𝑖) for all states 𝑠𝑡 in 𝑆𝑖 where 𝑒𝑖 is

handled at line 8, and negative examples (𝑠𝑡 , 𝑒𝑖) for all states 𝑠𝑡 in prior (𝑆0, . . . , 𝑆𝑖−1) and subsequent
(𝑆𝑖+1, . . .) partitions to illustrate why 𝑒𝑖 should not be handled earlier at line 10 or does not need to be
handled afterwards at line 12 in these negative states. For instance, in Fig. 15, RoboScribe shows why

the red block is placed after the green and yellow blocks. In the top row, where the green and yellow

blocks are already positioned, any state involving the placement of the red block is considered a

positive example. In the bottom row, where the green and yellow blocks are not yet in their goal

positions, the placement of the red block is marked as a negative example (it should not be handled),

and any subsequent states after the red block is positioned are also negative examples (since its

handling is already complete). Given the positive and negative examples {(𝑠𝑡 , 𝑒𝑖)}+, {(𝑠𝑡 , 𝑒𝑖)}− , any
classifier that defines the relationship between 𝑒𝑖 and other objects in 𝑠𝑡 (abstracted as existential

variables) and effectively separates the examples, provides both an ordering and a termination

constraint for handling 𝑒𝑖 during manipulation.

At line 5, RoboScribe uses top-down synthesis to generate a classifier predicate for each 𝑒𝑖 ,

following the production rules for predicates 𝜓 in our task specification language (see Fig. 11).

In this process, we augment 𝜓 with learned state abstraction predicates from abstract subtask

trees as these predicates provide additional task-relevant constraints. The learned predicates for all

𝑒𝑖 are combined to fill in the loop condition in the synthesized program. Here we use top-down

enumeration instead of decision tree (DT) learning because loop conditions for handling sequences

typically require existential quantifiers to manage unbounded entities with dependencies, which

are not well-suited for DTs. If the synthesis algorithm does not find a classifier predicate for an

object 𝑒𝑖 within a reasonable search budget, RoboScribe interprets this as the absence of an ordering

constraint for that 𝑒𝑖 — the agent can select 𝑒𝑖 for manipulation without restrictions, and it then

returns true in this case. Given the examples in Fig.15, RoboScribe synthesizes the ordering predicate

in Eq.4 for Tower. This predicate ensures that any block with a lower goal position must be placed

before the current block.

4.3.3 Reinforcement Program Learning
Given a program P inferred from an abstract subtask tree𝑇 reflecting the current abstraction of the

real robot environmentM, the TrainProgram procedure called in Algorithm 5 grounds P inM by

learning the low-level neural controllers invoked by P to fulfill the subtasks within𝑇 . We maintain

separate buffers 𝐵𝜑 to store trajectories associated with each low-level controller 𝜋𝜑 within P.
Program trajectories 𝜁 are sampled by executing P in the real environment 𝜁 ∼ Exec(M,P). Each
sub-trajectory of 𝜁 generated by a specific controller 𝜋𝜑 is stored only in the corresponding buffer

𝐵𝜑 . During each gradient update step, TrainProgram updates each policy 𝜋𝜑 by sampling from its

buffer 𝐵𝜑 and optimizes it using any off-the-shelf off-policy RL algorithm (e.g. Soft Actor-Critic),

aiming to maximize the expected reward for 𝜋𝜑 :

𝜋𝜑 = argmax

𝜋𝜑
E𝜁=𝑠0,𝑎0,𝑠1,· · · ,𝑠𝐿,𝑎𝐿∼𝐵𝜑

[
𝐿∑︁
𝑖=0

𝛾𝑡𝑅𝜑 (𝑠𝑖 , 𝑎𝑖)
]

where 𝑅𝜑 denotes the reward function used to train 𝜋𝜑 , 𝐿 is the sampled trajectory length, and 𝛾 is

the discount factor.

For each subtask to learn 𝜋𝜑 , our training procedure aims to construct the reward function 𝑅𝜑
that provides feedback based on the satisfaction of these predicates throughout a policy trajectory.

Instead of only using 𝜑 to provide a binary signal indicating whether a subgoal state has been

achieved, 𝑅𝜑 quantifies a continuous measure of state proximity between the current state 𝑠 and

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 19

the satisfaction of 𝜑 to enables smoother policy optimization. This approach allows for a more

granular assessment of progress, guiding the agent incrementally towards the subgoal states in 𝜑 .

Formally, we define the reward function 𝑅𝜑 recursively based on the structure of the predicate 𝜑 :

𝑅𝜑 (𝑠) =


𝑅(𝜑1 ∧ 𝜑2) = min(𝑅𝜑1

(𝑠), 𝑅𝜑2
(𝑠)) if 𝜑 = 𝜑1 ∧ 𝜑2,

𝑅(𝜑1 ∨ 𝜑2) = max(𝑅𝜑1
(𝑠), 𝑅𝜑2

(𝑠)) if 𝜑 = 𝜑1 ∨ 𝜑2,

𝑅(𝛼 > 𝜙) = 𝛼 (𝑠) − 𝜙 if 𝜑 = 𝛼 > 𝜙,

𝑅(𝛼 < 𝜙) = 𝜙 − 𝛼 (𝑠) if 𝜑 = 𝛼 < 𝜙.

4.4 Extension: Conditional Statements

Fig. 16. Conditional
Pick&Place Environment
for a cube and a peg.

The GenProgram procedure in Algorithm 5 operates under the assump-

tion that demonstrations implicitly suggest the order for handling multiple

objects in a multi-object task. However, this order may vary depending on

the goal conditions. For instance, consider a scenario with a peg (blue) and

a cube (red) in Fig. 16. If the peg’s goal region is above the cube’s goal, the

task must be completed by first moving the cube, then the peg—and vice

versa. Our implementation relaxes this assumption by repurposing the

PredicateSynthesis algorithm from Algorithm 6 (designed for sorting

objects subsumed by a circular abstract subtask tree node) to synthesize

the order under which the multiple predecessors of a tree node for objects

of different types should be executed. This approach identifies the condi-

tions for objects to be handled, embedding these conditions into conditional statements to select

the appropriate handling sequence.

5 Experiments
RoboScribe is implemented in Python. In the implementation, low-level neural policies are Multi-

layer Perception (MLP) containing two hidden layers with 256 neurons. We leverage Soft Actor-

Critic (SAC) [22] from Stable-Baseline3 [47] as the RL algorithm to train the policies.

Our experiments are designed to answer the following research questions:

• (RQ1) Is RoboScribe able to learn effective and interpretable programs?

• (RQ2) Does the iterative program learned by RoboScribe generalize to unseen environments

without further training?

Main Baselines. Throughout the evaluation, we consider the following baselines:

• BC: Behavior Cloning (BC) is a standard learning from demonstration baseline. It applies super-

vised learning to train a policy that replicates expert actions for given states in demonstrations.

• GAIL [23]: Generative Adversarial Imitation Learning (GAIL) works by alternating between

training two components: a discriminator and an agent. The discriminator learns to tell the

difference between actions taken by an expert and those taken by the agent in similar situations.

Meanwhile, the agent is trained to take actions that make it harder for the discriminator to

distinguish between them, encouraging the agent to mimic the expert’s behavior. We choose

GAIL as a baseline because its discriminator functions similarly to the state abstraction predicates

we learn as classifiers.

• goalGAIL [18]: GoalGAIL combines GAIL with Hindsight Experience Replay (HER). Instead of

only using the original goal of a trajectory, the goal is replacedwith a state that was actually visited

during that trajectory. By doing so, the agent receives feedback (or rewards) more frequently.

20 Trovato et al.

We select it as a baseline because it is a stronger variant of GAIL that accelerates learning and

significantly improves sample efficiency.

• DeepSet [65]: DeepSet embraces an entity-based compositional structure in its neural policy

representation based on Self-Attention [59] to leverage the symmetries and invariances in the

EFMDP. Like our RoboScribe programs, its policy architectures decompose goal-conditioned

tasks into their constituent entities and subgoals.

For fair comparisons, we use the DeepSet architecture for the policies in BC and for both neural

networks in GAIL and goalGAIL, improving upon the original MLP-based work. DeepSet’s ability

to handle an arbitrary number of input objects makes it well-suited for multi-object environments.

We exclude direct quantitative comparisons with existing programmatic RL methods
like PROLEX [42], Tabula [44], and ReGuS [12] because they rely on predefined DSLs with man-

ually crafted state and action abstractions, whereas RoboScribe autonomously discovers these

abstractions. This fundamental difference makes direct performance comparisons impractical.

(a) Pick&place-Multi (b) Push-Multi

(c) Meta-World (d) PlaceCubesDrawer

Fig. 17. Testing environments with multiple enti-
ties.

Benchmarks. We use a suite of challeng-

ing robot manipulation environments including

Pick&place (Fig. 1a); Tower-5 (Fig. 1c) where

the goal is to assemble 5 scattered blocks into

a tower (88 state dimensions); Pick&Place-Cond
shown in Fig. 16 where the robot stacks a cube

and a peg based on their goal position order-

ing; Pick&Place-4 shown in Fig. 17a in the

Pick&place-Multi environment where the goal is

placing 4 blocks in their designated goal regions on

a surface, with the final block needing to be hung

by the gripper in the air at its goal position; Push-3
shown in Fig. 17b in the Push-Multi environment

where the goal is pushing 3 blocks to their re-

lated goal regions on a table surface; Meta-World
where a robot needs to be controlled to complete

3 tasks, including pushing the mug back, open-

ing the drawer and turning the faucet left; and

PlaceCubesDrawer visualized in Fig. 17d. In the

challenging PlaceCubesDrawer environment (134

state dimensions) from [37], the agent needs to open a drawer and iteratively places three cubes into

the drawer. We consider a sparse reward setting in which the agent receives reward 1.0 when the

entire task is completed successfully and 0 otherwise. For each environment, we supply a demon-

stration dataset with 50 successful trajectories. The demonstrations are collected by manually

controlling the end effector in a simulator to operate the objects.

5.1 RQ1: Learning Efficiency and Interpretability
For each environment, we train RoboScribe and the baseline methods with 5 random seeds, report-

ing their evaluation success rates during training, as shown in Fig. 18. While RoboScribe initially

experiences a flat zero success rate early in training, it focuses on comparative abstraction refine-

ment to discover the abstract task structure and grounding abstract actions to reach automatically

discovered subgoal conditions, guiding the agent towards the overall goal progressively. Robo-

Scribe’s success rate increases rapidly once the program structure is fully developed, eventually

surpassing the performance of the baseline methods. For Tower-5, there is a sharp increase in

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 21

Fig. 18. Rewards for all the tools throughout the training phase. The solid curve represents the mean across 5
random seeds. The shaded area indicates the standard deviation. In Meta-World, we report the success rates
for each subtask—pushing the mug back (t0), opening the drawer (t1), and turning the faucet left (t2)—in the
order that RoboScribe discovers them.

success rates around 1e7 steps. This is because the task requires the end effector to move its hand

away from the top block to a certain height to ensure stable tower construction. The final subgoal

of moving away the end effector is relatively easier to learn, and by this point, the agent has already

mastered stacking the blocks. As a result, the final task success rate improves significantly after

this. Other than Pick&place and Push-3, the baselines struggle to achieve progress due to the

complexity of the observations involving multiple objects and the sparsity of the reward signals.

Compared to black-box neural network policies, the programmatic approach from RoboScribe

offers greater interpretability. Programs contain explicit subgoal conditions, making their decision-

making process easier to understand. For instance, in the Push-3 task, where the end effector 𝜇

must push a block 𝑏 to a target position 𝑔(𝑏) on a table, RoboScribe synthesizes the state abstraction

predicate arctan2(𝜇 ↓𝑥,𝑦 −𝑏 ↓𝑥,𝑦) − arctan2(𝑔(𝑏) ↓𝑥,𝑦 −𝑏 ↓𝑥,𝑦) < 𝜙 . This predicate captures

the condition where the end effector, block, and goal region are aligned for direct pushing, thus

providing a clear interpretation of the logic learned by the control strategy. The program also uses

state-conditioned loops to define recurring interactions with multiple objects, leading to structured

policy representations.

5.2 RQ2: Generalization to New Environments
For the Tower and Push-Multi environments, the capability of handling arbitrary numbers of

objects is desired. We analyze the transferability of the synthesized iterative program to diverse

environment settings.

Tower Environment. We synthesize the Tower program in a single tower setting with 4 or

5 blocks and evaluate its performance across diverse environments without further training, as

shown in Fig. 19. These environments include a taller single tower with 6 or 7 blocks, multiple

towers with 2 to 3 blocks per tower, and a pyramid tower with 4 to 9 blocks. As the baselines

22 Trovato et al.

Fig. 20. Comparison between ReNN and RoboScribe on zero-shot generalization to new Tower environment
settings. Specifically, policies trained on single tower with 4 blocks or 5 blocks are evaluated on Single (but
taller) towers, multiple towers and pyramid configurations with varying numbers of blocks. Success rate is
reported as accuracy of completing a task averaged over 500 episodes.

discussed in Sec. 5.1 fail to solve the Tower task, we turn to the curriculum learning-based approach

ReNN [30], which progressively learns to stack 2, 3, and ultimately 5 blocks, while RoboScribe

directly learns to handle all 5 blocks in one go. Unlike ReNN, which requires expert-designed curricu-

lum, RoboScribe operates without such assumptions, offering a more flexible and practical solution.

(a) Single Tower (b) Multi Towers (c) Pyramids

Fig. 19. Novel Tower Environments.

Fig. 20 presents the results for Ro-

boScribe and ReNN [30]. In the sin-

gle tower setting, ReNN benefits

from curriculum learning, achieving

slightly better results when the train-

ing and evaluation environments

match (e.g., single towers with 4 and 5

blocks). However, RoboScribe demon-

strates superior generalization. For

instance, when transferring a policy trained on 4 blocks to a taller single tower, ReNN achieves less

than 5% success, while RoboScribe trained on 4 blocks achieves 55% (±1%) success with 5 blocks

and 15% (±1%) with 6 blocks. In both multi-tower and pyramid settings, RoboScribe significantly

outperforms ReNN across block counts from 4 to 9.

Fig. 21. Push-Multi
Confined Environment.

Push-Multi Environment. To evaluate the iterative program learned

in the Push-Multi environment, we introduce a confined version,

Push-Multi Confined (Fig. 21), where goals are randomly arranged along

a line near the table’s upper edge. To achieve the goal condition, the robot

benefits from pushing the blocks in a certain order. For example, in Fig. 21,

the robot should push the blue block first, followed by green, then red.

Pushing blocks out of this order, such as green or red first, may obstruct the

blue block’s path to its goal. For RoboScribe, we reuse the learned iterative

program by providing demonstrations of the correct entity handling se-

quence, allowing it to update its loop condition without additional training.

In contrast, we continue training the baseline DeepSet [65] model on the

confined environment until convergence, as it cannot structurally update its model like RoboScribe.

RoboScribe correctly learns the entity handling order from the demonstration and updates the

loop condition accordingly. In comparison, DeepSet achieves a success rate of 81.3% (±4.0%), while
RoboScribe achieves 86.3% (±0.5%), averaged over 500 episodes. RoboScribe’s superior performance

demonstrates the generalization of learned policies and program structures. Additionally, with the

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 23

interpretability of its programmatic policy, RoboScribe offers greater flexibility in transferring the

synthesized program to different environment settings.

6 Related Work
Programmatic Reinforcement Learning. Our work is closely related to recent advance on

exploring domain-specific programs as an interpretable representation for RL. PIRL [60, 61] and

Viper [5] synthesize loop-free, stateless programs, which face limitations in complex robot tasks.

Inala et al. [26] improved on this by learning robot controllers as state machines, enabling general-

ization to tasks with repeating behaviors. These methods rely heavily on strong supervision from

oracles like pretrained RL controllers. The tasks they can solve are thus bounded by the capability

of the oracle. In contrast, program synthesis methods such as PROLEX [42] and Tabula [44] learn

robot control programs from task demonstrations. They generalize these demonstrations into regex-

based sketches or Mealy automata to bootstrap synthesis. They can synthesize programs with

control flow structures including loops and conditionals, allowing generalization from a specific

sequence of actions to a general structure to solve unseen tasks. Their DSLs feature extensive library

functions for manipulating various objects and teleporting robots to different locations. LEAPS [58],

PRL [45], and ReGuS [12] eliminate the need for pretrained oracles and synthesizes robot-control

programs directly from reward signals. They demonstrate that utilizing rich control-flow constructs

(state-conditioned loops and procedure calls) can effectively tackle long-horizon and sparse-reward

tasks, which are beyond the capabilities of standard deep RL baselines. However, these existing

works rely on a manually designed library of state abstraction predicates and abstract actions to

bootstrap synthesis. RoboScribe addresses the primary challenge of automating the construction of

robot state and action abstractions.

Learning State and Action Abstraction. RoboScribe shares similarities with generalized

planning methods like [54, 57], which derive looped plans for solving unbounded problem instances.

However, planning techniques require a provided state transition model for each robot action within

the abstract state space. Component-based synthesis techniques with user-defined predicates, as

in [10, 20], have similar requirements. Automatically learning state and action abstractions has been

explored in task and motion planning for robot control [6, 21, 27, 41]. Existing techniques typically

learn either predicates from demonstrations assuming low-level controllers are given [13, 34, 53]

or learn controllers from demonstrations assuming known predicates [1, 15, 52]. RoboScribe

simultaneously learns state and action abstractions, removing such assumptions. There exist library

learning techniques [8, 9, 19] that use syntax abstraction to extract common structures from a

program corpus as reusable library functions. In contrast, RoboScribe performs state abstraction.
RoboScribe is broadly related to hierarchical RL and planning for robot learning [3, 28, 29, 38, 40, 43,

46, 54, 62]. However, such techniques often struggle with long-horizon tasks with sparse rewards.

Traditional controller synthesis algorithms, especially those using formal methods and temporal

logic, rely on automata-based approaches involving abstraction and discretization of continuous

state and action spaces [14, 49]. These methods face limitations in high-dimensional systems, where

discretization can lead to issues like state explosion.

Reward-guided Program Synthesis. Synthesis algorithms often design dense rewards to guide

search directions. For example, Probe [4] and Syntia [7] evaluate programs using input-output

examples, generating rich rewards based on output similarity. Faery [11] employs Monte Carlo

estimation to sample user queries for additional examples. However, in sparse-reward scenarios,

synthesizing complete programs with complex control flow through Monte Carlo methods is

challenging due to the low probability of discovering programs with nonzero rewards. RoboScribe

addresses this by using comparative abstraction refinement to learn state abstraction predicates

that capture subgoal conditions, effectively breaking down the learning process.

24 Trovato et al.

Conclusion. This paper introduces RoboScribe, a program synthesis framework guided by ab-

straction refinement to address long-horizon, multi-object tasks in robotics. RoboScribe alternates

between comparative abstraction refinement and iterative program learning, using demonstrations

and execution trajectories from synthesized programs to iteratively refine environment abstrac-

tions until a task-solving program can be generated. It identifies recurring subroutines from raw,

continuous state-action spaces without predefined abstractions. Experimental results show that

RoboScribe generalizes effectively to long-horizon tasks with varying object counts, outperforming

baseline methods in interpretability and efficiency. Currently, our language restricts predicates

to use norm and arctan functions. It remains an open question whether this expressiveness is

sufficient for all tasks—for example, whether additional trigonometric functions are needed, which

we leave for future work.

Data-Availability Statement
The intended artifact for this work is an implementation of RoboScribe, a program synthesis

framework for robotic control tasks. The artifact includes both the codebase for synthesizing

iterative programs and associated datasets used for training and evaluation. The artifact, along with

relevant datasets, will be made available upon acceptance for Artifact Evaluation. A prelimnary

version is available at https://anonymous.4open.science/r/AbsDemo-D008/.

References
[1] Diego Aineto, Sergio Jiménez, and Eva Onaindia. 2022. A Comprehensive Framework for Learning Declarative Action

Models. J. Artif. Intell. Res. 74 (2022), 1091–1123. https://doi.org/10.1613/JAIR.1.13073

[2] David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable Reinforcement Learning Agents. In

Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.

[4] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis.

Proc. ACM Program. Lang. OOPSLA (2020).

[5] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable Reinforcement Learning via Policy Extraction.

In Advances in Neural Information Processing Systems, NeurIPS 2018.
[6] Pascal Bercher, Ron Alford, and Daniel Höller. 2019. A Survey on Hierarchical Planning - One Abstract Idea, Many

Concrete Realizations. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 6267–6275. https://doi.org/10.24963/IJCAI.2019/875

[7] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of

Obfuscated Code. In 26th USENIX Security Symposium, USENIX Security 2017.
[8] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and Armando

Solar-Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7, POPL (2023), 1182–1213.

https://doi.org/10.1145/3571234

[9] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. 2023. babble:

Learning Better Abstractions with E-Graphs and Anti-unification. Proc. ACM Program. Lang. 7, POPL (2023), 396–424.

https://doi.org/10.1145/3571207

[10] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020. Program Synthesis Using Deduction-

Guided Reinforcement Learning. In Computer Aided Verification - 32nd International Conference, CAV 2020.
[11] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng. 2023. Fast and Reliable Program Synthesis

via User Interaction. In 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023.
[12] Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu. 2024. Reward-Guided Synthesis of Intelligent Agents with

Control Structures. Proc. ACM Program. Lang. 8, PLDI (2024), 1730–1754. https://doi.org/10.1145/3656447

[13] Aidan Curtis, Tom Silver, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2022. Discovering

State and Action Abstractions for Generalized Task and Motion Planning. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022. AAAI Press, 5377–5384. https://doi.org/10.1609/AAAI.V36I5.20475

https://anonymous.4open.science/r/AbsDemo-D008/
https://doi.org/10.1613/JAIR.1.13073
https://doi.org/10.24963/IJCAI.2019/875
https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571207
https://doi.org/10.1145/3656447
https://doi.org/10.1609/AAAI.V36I5.20475

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 25

[14] Mehdi Dadvar, Rashmeet Kaur Nayyar, and Siddharth Srivastava. 2023. Conditional Abstraction Trees for Sample-

Efficient Reinforcement Learning. In The 39th Conference on Uncertainty in Artificial Intelligence. https://openreview.

net/forum?id=tQP094M0j8G

[15] Joaquim Ortiz de Haro, Jung-Su Ha, Danny Driess, and Marc Toussaint. 2021. Structured deep generative models for

sampling on constraint manifolds in sequential manipulation. In Conference on Robot Learning, 8-11 November 2021,
London, UK (Proceedings of Machine Learning Research, Vol. 164), Aleksandra Faust, David Hsu, and Gerhard Neumann

(Eds.). PMLR, 213–223. https://proceedings.mlr.press/v164/ortiz-haro22a.html

[16] Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbacher, Dwarak Vittal, and Kristian Kersting. 2023. Boosting

Object Representation Learning via Motion and Object Continuity. In Machine Learning and Knowledge Discovery in
Databases: Research Track - European Conference, ECML PKDD 2023.

[17] Thomas G. Dietterich. 2000. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. J.
Artif. Intell. Res. (2000).

[18] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. 2019. Goal-conditioned Imitation Learning. In

Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 15298–15309. https://proceedings.neurips.cc/paper/

2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html

[19] Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando

Solar-Lezama, and Joshua B. Tenenbaum. [n. d.]. DreamCoder: bootstrapping inductive program synthesis with

wake-sleep library learning. In 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2021. 835–850.

[20] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of

table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017.

[21] Caelan Reed Garrett, Rohan Chitnis, Rachel M. Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás

Lozano-Pérez. 2021. Integrated Task and Motion Planning. Annu. Rev. Control. Robotics Auton. Syst. 4 (2021), 265–293.
https://doi.org/10.1146/ANNUREV-CONTROL-091420-084139

[22] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. In International conference on machine learning. PMLR, 1861–1870.

[23] Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 4565–4573.

https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html

[24] Jarrett Holtz, Arjun Guha, and Joydeep Biswas. 2020. Robot Action Selection Learning via Layered Dimension Informed

Program Synthesis. In 4th Conference on Robot Learning, CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge,
MA, USA (Proceedings of Machine Learning Research, Vol. 155), Jens Kober, Fabio Ramos, and Claire J. Tomlin (Eds.).

PMLR, 1471–1480. https://proceedings.mlr.press/v155/holtz21a.html

[25] Baichuan Huang, Abdeslam Boularias, and Jingjin Yu. 2022. Parallel Monte Carlo Tree Search with Batched Rigid-body

Simulations for Speeding up Long-Horizon Episodic Robot Planning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2022, Kyoto, Japan, October 23-27, 2022. IEEE, 1153–1160. https://doi.org/10.1109/IROS47612.

2022.9981962

[26] Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. 2020. Synthesizing Programmatic

Policies that Inductively Generalize. In 8th International Conference on Learning Representations, ICLR 2020.
[27] George Dimitri Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2018. From Skills to Symbols: Learning

Symbolic Representations for Abstract High-Level Planning. J. Artif. Intell. Res. 61 (2018), 215–289. https://doi.org/10.

1613/JAIR.5575

[28] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim. 2019. Composing Complex

Skills by Learning Transition Policies. In 7th International Conference on Learning Representations, ICLR 2019.
[29] Youngwoon Lee, Jingyun Yang, and Joseph J. Lim. 2020. Learning to Coordinate Manipulation Skills via Skill Behavior

Diversification. In 8th International Conference on Learning Representations, ICLR 2020.
[30] Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. 2020. Towards Practical Multi-Object Manipulation using

Relational Reinforcement Learning. In 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris,
France, May 31 - August 31, 2020. IEEE, 4051–4058. https://doi.org/10.1109/ICRA40945.2020.9197468

[31] Junchi Liang and Abdeslam Boularias. 2023. Learning Category-Level Manipulation Tasks from Point Clouds with

Dynamic Graph CNNs. In Proceedings of the 2023 International Conference on Robotics and Automation (ICRA).
[32] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. 2023.

Code as Policies: Language Model Programs for Embodied Control. In IEEE International Conference on Robotics and

https://openreview.net/forum?id=tQP094M0j8G
https://openreview.net/forum?id=tQP094M0j8G
https://proceedings.mlr.press/v164/ortiz-haro22a.html
https://proceedings.neurips.cc/paper/2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://doi.org/10.1146/ANNUREV-CONTROL-091420-084139
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://proceedings.mlr.press/v155/holtz21a.html
https://doi.org/10.1109/IROS47612.2022.9981962
https://doi.org/10.1109/IROS47612.2022.9981962
https://doi.org/10.1613/JAIR.5575
https://doi.org/10.1613/JAIR.5575
https://doi.org/10.1109/ICRA40945.2020.9197468

26 Trovato et al.

Automation, ICRA 2023, London, UK, May 29 - June 2, 2023. IEEE, 9493–9500. https://doi.org/10.1109/ICRA48891.2023.

10160591

[33] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang, and Sungjin

Ahn. 2020. SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition. In

8th International Conference on Learning Representations, ICLR 2020.
[34] João Loula, Kelsey R. Allen, Tom Silver, and Josh Tenenbaum. 2020. Learning constraint-based planning models from

demonstrations. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA,
October 24, 2020 - January 24, 2021. IEEE, 5410–5416. https://doi.org/10.1109/IROS45743.2020.9341535

[35] Chaitanya Mitash, Kostas E. Bekris, and Abdeslam Boularias. 2017. A self-supervised learning system for object

detection using physics simulation and multi-view pose estimation. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2017.

[36] Chaitanya Mitash, Abdeslam Boularias, and Kostas E. Bekris. 2018. Robust 6D Object Pose Estimation with Stochastic

Congruent Sets. In British Machine Vision Conference 2018, BMVC 2018.
[37] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao Su.

2021. ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung (Eds.). https://datasets-benchmarks-proceedings.

neurips.cc/paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html

[38] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient Hierarchical Reinforcement Learning.

In Annual Conference on Neural Information Processing Systems, NeurIPS 2018.
[39] Ashvin Nair, BobMcGrew,Marcin Andrychowicz,Wojciech Zaremba, and Pieter Abbeel. 2017. Overcoming Exploration

in Reinforcement Learning with Demonstrations. CoRR abs/1709.10089 (2017). arXiv:1709.10089 http://arxiv.org/abs/

1709.10089

[40] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. 2019. Planning with Goal-Conditioned Policies. In

Annual Conference on Neural Information Processing Systems, NeurIPS 2019.
[41] Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. 2007. Learning Symbolic Models of Stochastic

Domains. J. Artif. Intell. Res. 29 (2007), 309–352. https://doi.org/10.1613/JAIR.2113

[42] Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Isil Dillig. 2024. Programming-by-Demonstration

for Long-Horizon Robot Tasks. Proc. ACM Program. Lang. 8, POPL (2024), 512–545. https://doi.org/10.1145/3632860

[43] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019. MCP: Learning Composable

Hierarchical Control with Multiplicative Compositional Policies. In Annual Conference on Neural Information Processing
Systems, NeurIPS 2019.

[44] David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2023. Sketching

Robot Programs On the Fly. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction,
HRI 2023, Stockholm, Sweden, March 13-16, 2023, Ginevra Castellano, Laurel D. Riek, Maya Cakmak, and Iolanda Leite

(Eds.). ACM, 584–593. https://doi.org/10.1145/3568162.3576991

[45] Wenjie Qiu and He Zhu. 2022. Programmatic Reinforcement Learning without Oracles. In 10th International Conference
on Learning Representations, ICLR 2022.

[46] Ahmed Hussain Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, and Michael C. Yip. 2020.

Composing Task-Agnostic Policies with Deep Reinforcement Learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[47] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. 2021. Stable-

Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine Learning Research 22, 268 (2021),

1–8. http://jmlr.org/papers/v22/20-1364.html

[48] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified,

Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016. 779–788.
[49] Wei Ren, Raphaël M. Jungers, and Dimos V. Dimarogonas. 2024. Zonotope-Based Symbolic Controller Synthesis for

Linear Temporal Logic Specifications. IEEE Trans. Autom. Control. 69, 11 (2024), 7630–7645. https://doi.org/10.1109/

TAC.2024.3394313

[50] Rahul Shome, Wei N. Tang, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev, Jingjin Yu, Abdeslam Boularias,

and Kostas E. Bekris. 2019. Towards Robust Product Packing with a Minimalistic End-Effector. In International
Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019. IEEE, 9007–9013. https:

//doi.org/10.1109/ICRA.2019.8793966

[51] Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. 2020. Few-Shot Bayesian

Imitation Learning with Logical Program Policies. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020.

https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/IROS45743.2020.9341535
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/eda80a3d5b344bc40f3bc04f65b7a357-Abstract-round2.html
https://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
https://doi.org/10.1613/JAIR.2113
https://doi.org/10.1145/3632860
https://doi.org/10.1145/3568162.3576991
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1109/TAC.2024.3394313
https://doi.org/10.1109/TAC.2024.3394313
https://doi.org/10.1109/ICRA.2019.8793966
https://doi.org/10.1109/ICRA.2019.8793966

Abstraction Refinement-guided Program Synthesis for Robot Learning from Demonstrations 27

[52] Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2022. Learning

Neuro-Symbolic Skills for Bilevel Planning. In Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland,
New Zealand (Proceedings of Machine Learning Research, Vol. 205), Karen Liu, Dana Kulic, and Jeffrey Ichnowski (Eds.).

PMLR, 701–714. https://proceedings.mlr.press/v205/silver23a.html

[53] Tom Silver, Rohan Chitnis, Nishanth Kumar,WillieMcClinton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Joshua B.

Tenenbaum. 2023. Predicate Invention for Bilevel Planning. In Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, Brian Williams,

Yiling Chen, and Jennifer Neville (Eds.). AAAI Press, 12120–12129. https://doi.org/10.1609/AAAI.V37I10.26429

[54] Tom Silver, Rohan Chitnis, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2021. Learning

Symbolic Operators for Task and Motion Planning. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2021.

[55] Avishai Sintov, Andrew S. Morgan, Andrew Kimmel, Aaron M. Dollar, Kostas E. Bekris, and Abdeslam Boularias.

2019. Learning a State Transition Model of an Underactuated Adaptive Hand. IEEE Robotics Autom. Lett. 4, 2 (2019),
1287–1294. https://doi.org/10.1109/LRA.2019.2894875

[56] Changkyu Song and Abdeslam Boularias. 2019. Object Rearrangement with Nested Nonprehensile Manipulation

Actions. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,
November 3-8, 2019. IEEE, 6578–6585. https://doi.org/10.1109/IROS40897.2019.8967548

[57] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. 2011. A new representation and associated algorithms

for generalized planning. Artif. Intell. (2011).
[58] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. 2021. Learning to Synthesize Programs as Interpretable

and Generalizable Policies. In Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021.
[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. 2017. Attention Is All You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/1706.

03762

[60] Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. 2019. Imitation-Projected Programmatic

Reinforcement Learning. In Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019.
[61] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. 2018. Programmati-

cally Interpretable Reinforcement Learning. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018.

[62] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John P. Agapiou, and Koray

Kavukcuoglu. 2016. Strategic Attentive Writer for Learning Macro-Actions. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain.

[63] Jimmy Xin, Linus Zheng, Kia Rahmani, Jiayi Wei, Jarrett Holtz, Isil Dillig, and Joydeep Biswas. 2024. Programmatic

Imitation Learning From Unlabeled and Noisy Demonstrations. IEEE Robotics Autom. Lett. 9, 6 (2024), 4894–4901.
https://doi.org/10.1109/LRA.2024.3385691

[64] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin Rinard. 2021. Program

Synthesis Guided Reinforcement Learning for Partially Observed Environments. In Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021.

[65] Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. 2024. Policy Architectures for Compositional

Generalization in Control. In Proceedings of the 1st Reinforcement Learning Conference, RLC 2024, Amherst, MA, USA,
August 9-12, 2024, Philip S. Thomas, Feryal M. P. Behbahani, Glen Berseth, Scott M. Jordan, Scott Niekum, Andrew

Patterson, Eugene Vinitsky, AdamWhite, Martha White, and Amy Zhang (Eds.). University of Massachusetts Amherst,

MA, USA, 2264–2283.

[66] Shaojun Zhu, Andrew Kimmel, Kostas E. Bekris, and Abdeslam Boularias. 2018. Fast Model Identification via

Physics Engines for Data-Efficient Policy Search. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 3249–3256.

https://doi.org/10.24963/ijcai.2018/451

https://proceedings.mlr.press/v205/silver23a.html
https://doi.org/10.1609/AAAI.V37I10.26429
https://doi.org/10.1109/LRA.2019.2894875
https://doi.org/10.1109/IROS40897.2019.8967548
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/LRA.2024.3385691
https://doi.org/10.24963/ijcai.2018/451

	Abstract
	1 Introduction
	2 Overview
	2.1 Key Assumptions
	2.2 Program and Domain-Specific Language
	2.3 Demonstration-directed Robot Environment Abstraction Refinement
	2.4 Synthesizing Iterative Robot-Control Programs

	3 Problem Setup
	4 Abstraction Refinement-guided Robot Control Program Synthesis
	4.1 Top-level Algorithm
	4.2 The Main Synthesis Procedure
	4.3 Synthesizing Robot-Control Programs from Abstract Subtask Trees
	4.4 Extension: Conditional Statements

	5 Experiments
	5.1 RQ1: Learning Efficiency and Interpretability
	5.2 RQ2: Generalization to New Environments

	6 Related Work
	References

