
An Inductive Synthesis Framework for Verifiable
Reinforcement Learning

He Zhu
Galois, Inc.

USA
hezhu@galois.com

Zikang Xiong
Purdue University

USA
xiong84@purdue.edu

Stephen Magill
Galois, Inc.

USA
stephen@galois.com

Suresh Jagannathan
Purdue University

USA
suresh@cs.purdue.edu

Abstract
Despite the tremendous advances that have been made in
the last decade on developing useful machine-learning ap-
plications, their wider adoption has been hindered by the
lack of strong assurance guarantees that can be made about
their behavior. In this paper, we consider how formal verifi-
cation techniques developed for traditional software systems
can be repurposed for verification of reinforcement learning-
enabled ones, a particularly important class of machine learn-
ing systems. Rather than enforcing safety by examining and
altering the structure of a complex neural network imple-
mentation, our technique uses blackbox methods to synthe-
sizes deterministic programs, simpler, more interpretable,
approximations of the network that can nonetheless guaran-
tee desired safety properties are preserved, even when the
network is deployed in unanticipated or previously unob-
served environments. Our methodology frames the problem
of neural network verification in terms of a counterexam-
ple and syntax-guided inductive synthesis procedure over
these programs. The synthesis procedure searches for both
a deterministic program and an inductive invariant over an
infinite state transition system that represents a specification
of an application’s control logic. Additional specifications
defining environment-based constraints can also be provided
to further refine the search space. Synthesized programs de-
ployed in conjunction with a neural network implementation
dynamically enforce safety conditions by monitoring and
preventing potentially unsafe actions proposed by neural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314638

policies. Experimental results over a wide range of cyber-
physical applications demonstrate that software-inspired
formal verification techniques can be used to realize trust-
worthy reinforcement learning systems with low overhead.

CCS Concepts • Software and its engineering → Au-
tomatic programming; Formal software verification.

Keywords ProgramVerification, Program Synthesis, Invari-
ant Inference, Reinforcement Learning, Runtime Shielding

ACM Reference Format:
He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan.
2019. An Inductive Synthesis Framework for Verifiable Reinforce-
ment Learning. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’19),
June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3314221.3314638

1 Introduction
Neural networks have proven to be a promising software ar-
chitecture for expressing a variety of machine learning appli-
cations. However, non-linearity and stochasticity inherent in
their design greatly complicate reasoning about their behav-
ior. Many existing approaches to verifying [17, 23, 31, 37] and
testing [43, 45, 48] these systems typically attempt to tackle
implementations head-on, reasoning directly over the struc-
ture of activation functions, hidden layers, weights, biases,
and other kinds of low-level artifacts that are far-removed
from the specifications they are intended to satisfy. Moreover,
the notion of safety verification that is typically considered
in these efforts ignore effects induced by the actual envi-
ronment in which the network is deployed, significantly
weakening the utility of any safety claims that are actually
proven. Consequently, effective verification methodologies
in this important domain still remains an open problem.

To overcome these difficulties, we define a new verification
toolchain that reasons about correctness extensionally, using
a syntax-guided synthesis framework [5] that generates a
simpler and more malleable deterministic program guaran-
teed to represent a safe control policy of a reinforcement

https://doi.org/10.1145/3314221.3314638
https://doi.org/10.1145/3314221.3314638

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

learning (RL)-based neural network, an important class of
machine learning systems, commonly used to govern cyber-
physical systems such as autonomous vehicles, where high
assurance is particularly important. Our synthesis procedure
is designed with verification in mind, and is thus structured
to incorporate formal safety constraints drawn from a logical
specification of the control system the network purports to
implement, along with additional salient environment prop-
erties relevant to the deployment context. Our synthesis
procedure treats the neural network as an oracle, extract-
ing a deterministic program P intended to approximate the
policy actions implemented by the network. Moreover, our
procedure ensures that a synthesized program P is formally
verified safe. To this end, we realize our synthesis proce-
dure via a counterexample guided inductive synthesis (CEGIS)
loop [5] that eliminates any counterexamples to safety of P.
More importantly, rather than repairing the network directly
to satisfy the constraints governingP, we instead treatP as a
safety shield that operates in tandem with the network, over-
riding network-proposed actions whenever such actions can
be shown to lead to a potentially unsafe state. Our shielding
mechanism thus retains performance, provided by the neural
policy, while maintaining safety, provided by the program.
Our approach naturally generalizes to infinite state systems
with a continuous underlying action space. Taken together,
these properties enable safety enforcement of RL-based neu-
ral networks without having to suffer a loss in performance
to achieve high assurance. We show that over a range of
cyber-physical applications defining various kinds of control
systems, the overhead of runtime assurance is nominal, less
than a few percent, compared to running an unproven, and
thus potentially unsafe, network with no shield support. This
paper makes the following contributions:

1. We present a verification toolchain for ensuring that
the control policies learned by an RL-based neural net-
work are safe. Our notion of safety is defined in terms
of a specification of an infinite state transition system
that captures, for example, the system dynamics of a
cyber-physical controller.

2. We develop a counterexample-guided inductive syn-
thesis framework that treats the neural control policy
as an oracle to guide the search for a simpler deter-
ministic program that approximates the behavior of
the network but which is more amenable for verifi-
cation. The synthesis procedure differs from prior ef-
forts [9, 47] because the search procedure is bounded
by safety constraints defined by the specification (i.e.,
state transition system) as well as a characterization
of specific environment conditions defining the appli-
cation’s deployment context.

3. We use a verification procedure that guarantees ac-
tions proposed by the synthesized program always
lead to a state consistent with an inductive invariant

Figure 1. Inverted Pendulum State Transition System. The
pendulum has massm and length l . A system state is s =
[η,ω]T where η is the its angle andω is its angular velocity. A
continuous control action amaintains the pendulum upright.

of the original specification and deployed environment
context. This invariant defines an inductive property
that separates all reachable (safe) and unreachable (un-
safe) states expressible in the transition system.

4. We develop a runtime monitoring framework that
treats the synthesized program as a safety shield [4],
overriding proposed actions of the network whenever
such actions can cause the system to enter into an
unsafe region.

We present a detailed experimental study over a wide
range of cyber-physical control systems that justify the util-
ity of our approach. These results indicate that the cost of
ensuring verification is low, typically on the order of a few
percent. The remainder of the paper is structured as follows.
In the next section, we present a detailed overview of our
approach. Sec. 3 formalizes the problem and the context. De-
tails about the synthesis and verification procedure are given
in Sec. 4. A detailed evaluation study is provided in Sec. 5.
Related work and conclusions are given in Secs. 6 and 7, resp.

2 Motivation and Overview
To motivate the problem and to provide an overview of our
approach, consider the definition of a learning-enabled con-
troller that operates an inverted pendulum. While the spec-
ification of this system is simple, it is nonetheless repre-
sentative of a number of practical control systems, such as
Segway transporters and autonomous drones, that have thus
far proven difficult to verify, but for which high assurance is
very desirable.

2.1 State Transition System
We model an inverted pendulum system as an infinite state
transition system with continuous actions in Fig. 1. Here, the
pendulum has massm and length l . A system state is s =
[η,ω]T where η is the pendulum’s angle and ω is its angular
velocity. A controller can use a 1-dimensional continuous
control action a to maintain the pendulum upright.

Since modern controllers are typically implemented digi-
tally (using digital-to-analog converters for interfacing be-
tween the analog system and a digital controller), we as-
sume that the pendulum is controlled in discrete time in-
stants kt where k = 0, 1, 2, · · · , i.e., the controller uses the

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

system dynamics, the change of rate of s , denoted as ṡ , to
transition every t time period, with the conjecture that the
control action a is a constant during each discrete time in-
terval. Using Euler’s method, for example, a transition from
state sk = s (kt) at time kt to time kt + t is approximated as
s (kt + t) = s (kt) + ṡ (kt) × t . We specify the change of rate ṡ
using the differential equation shown in Fig. 1.1 Intuitively,
the control action a is allowed to affect the change of rate of
η andω to balance a pendulum. Thus, small values of a result
in small swing and velocity changes of the pendulum, ac-
tions that are useful when the pendulum is upright (or nearly
so), while large values of a contribute to larger changes in
swing and velocity, actions that are necessary when the pen-
dulum enters a state where it may risk losing balance. In
case the system dynamics are unknown, we can use known
algorithms to infer dynamics from online experiments [1].

Assume the state transition system of the inverted pendu-
lum starts from a set of initial states S0:

S0 : {(η,ω) | − 20◦ ≤ η ≤ 20◦ ∧ −20◦ ≤ ω ≤ 20◦}

The global safety property we wish to preserve is that the
pendulum never falls down. We define a set of unsafe states
Su of the transition system (colored in yellow in Fig. 1):

Su : {(η,ω) | ¬(−90◦ < η < 90◦ ∧ −90◦ < ω < 90◦)}

We assume the existence of a neural network control pol-
icy πw : R2 → R that executes actions over the pendu-
lum, whose weight values of w are learned from training
episodes. This policy is a state-dependent function, mapping
a 2-dimensional state s (η and ω) to a control action a. At
each transition, the policy mitigates uncertainty through
feedback over state variables in s .
Environment Context. An environment context C[·] de-
fines the behavior of the application, where [·] is left open
to deploy a reasonable neural controller πw. The actions of
the controller are dictated by constraints imposed by the en-
vironment. In its simplest form, the environment is simply a
state transition system. In the pendulum example, this would
be the equations given in Fig. 1, parameterized by pendulum
mass and length. In general, however, the environment may
include additional constraints (e.g., a constraining bounding
box that restricts the motion of the pendulum beyond the
specification given by the transition system in Fig. 1).

2.2 Synthesis, Verification and Shielding
In this paper, we assume that a neural network is trained
using a state-of-the-art reinforcement learning strategy [28,
40]. Even though the resulting neural policy may appear to
work well in practice, the complexity of its implementation
makes it difficult to assert any strong and provable claims
about its correctness since the neurons, layers, weights and
1We derive the control dynamics equations assuming that an inverted
pendulum satisfies general Lagrangian mechanics and approximate non-
polynomial expressions with their Taylor expansions.

Figure 2. The Framework of Our Approach.

biases are far-removed from the intent of the actual controller.
We found that state-of-the-art neural network verifiers [17,
23] are ineffective for verification of a neural controller over
an infinite time horizon with complex system dynamics.
Framework. We construct a policy interpretation mecha-
nism to enable verification, inspired by prior work on im-
itation learning [36, 38] and interpretable machine learn-
ing [9, 47]. Fig. 2 depicts the high-level framework of our
approach. Our idea is to synthesize a deterministic policy
program from a neural policy πw, approximating πw (which
we call an oracle) with a simpler structural program P. Like
πw, P takes as input a system state and generates a control
action a. To this end, P is simulated in the environment
used to train the neural policy πw, to collect feasible states.
Guided by πw’s actions on such collected states, P is further
improved to resemble πw.
The goal of the synthesis procedure is to search for a de-

terministic program P∗ satisfying both (1) a quantitative
specification such that it bears reasonably close resemblance
to its oracle so that allowing it to serve as a potential sub-
stitute is a sensible notion, and (2) a desired logical safety
property such that when in operation the unsafe states de-
fined in the environment C cannot be reached. Formally,

P∗ = argmax
P∈Safe(C,JH K)

d (πw,P,C) (1)

where d (πw,P,C) measures proximity of P with its neural
oracle in an environment C; JH K defines a search space for
P with prior knowledge on the shape of target deterministic
programs; and, Safe(C, JH K) restricts the solution space to
a set of safe programs. A program P is safe if the safety
of the transition system C[P], the deployment of P in the
environment C, can be formally verified.

The novelty of our approach against prior work on neural
policy interpretation [9, 47] is thus two-fold:
1. We bake in the concept of safety and formal safety verifi-

cation into the synthesis of a deterministic program from
a neural policy as depicted in Fig. 2. If a candidate program
is not safe, we rely on a counterexample-guided inductive
synthesis loop to improve our synthesis outcome to en-
force the safety conditions imposed by the environment.

2. We allowP to operate in tandemwith the high-performing
neural policy. P can be viewed as capturing an inductive

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

invariant of the state transition system, which can be used
as a shield to describe a boundary of safe states within
which the neural policy is free to make optimal control de-
cisions. If the system is about to be driven out of this safety
boundary, the synthesized program is used to take an ac-
tion that is guaranteed to stay within the space subsumed
by the invariant. By allowing the synthesis procedure
to treat the neural policy as an oracle, we constrain the
search space of feasible programs to be those whose ac-
tions reside within a proximate neighborhood of actions
undertaken by the neural policy.

Synthesis. Reducing a complex neural policy to a simpler
yet safe deterministic program is possible because we do
not require other properties from the oracle; specifically,
we do not require that the deterministic program precisely
mirrors the performance of the neural policy. For example,
experiments described in [35] show that while a linear-policy
controlled robot can effectively stand up, it is unable to learn
an efficient walking gait, unlike a sufficiently-trained neural
policy. However, if we just care about the safety of the neural
network, we posit that a linear reduction can be sufficiently
expressive to describe necessary safety constraints. Based on
this hypothesis, for our inverted pendulum example, we can
explore a linear program space from which a deterministic
programPθ can be drawn expressed in terms of the following
program sketch:

def P[θ1, θ2](η, ω): return θ1η + θ2ω

Here, θ = [θ1,θ2] are unknown parameters that need to be
synthesized. Intuitively, the programweights the importance
of η and ω at a particular state to provide a feedback control
action to mitigate the deviation of the inverted pendulum
from (η = 0◦,ω = 0◦).
Our search-based synthesis sets θ to 0 initially. It runs

the deterministic program Pθ instead of the oracle neural
policy πw within the environment C defined in Fig. 1 (in this
case, the state transition system represents the differential
equation specification of the controller) to collect a batch of
trajectories. A run of the state transition system of C[Pθ]
produces a finite trajectory s0, s1, · · · , sT . We find θ from the
following optimization task that realizes (1):

max
θ ∈R2
E[ΣTt=0d (πw,Pθ , st)] (2)

whered (πw,Pθ , st) ≡

−(Pθ (st) − πw (st))
2 st < Su

−MAX st ∈ Su
. This

equation aims to search for a programPθ at minimal distance
from the neural oracle πw along sampled trajectories, while
simultaneously maximizing the likelihood that Pθ is safe.

Our synthesis procedure described in Sec. 4.1 is a random
search-based optimization algorithm [30]. We sample a new
position of θ iteratively from its hypersphere of a given small
radius surrounding the current position of θ and move to the

new position (w.r.t. a learning rate) as dictated by Equation
(2). For the running example, our search synthesizes:

def P(η, ω): return −12.05η + −5.87ω

The synthesized program can be used to intuitively interpret
how the neural oracle works. For example, if a pendulum
with a positive angle η > 0 leans towards the right (ω > 0),
the controller will need to generate a large negative control
action to force the pendulum to move left.
Verification. Since our method synthesizes a deterministic
program P, we can leverage off-the-shelf formal verification
algorithms to verify its safety with respect to the state transi-
tion system C defined in Fig. 1. To ensure that P is safe, we
must ascertain that it can never transition to an unsafe state,
i.e., a state that causes the pendulum to fall. When framed
as a formal verification problem, answering such a question
is tantamount to discovering an inductive invariant φ that
represents all safe states over the state transition system:

1. Safe: φ is disjoint with all unsafe states Su ,
2. Init: φ includes all initial states S0,
3. Induction: Any state in φ transitions to another state

in φ and hence cannot reach an unsafe state.
Inspired by template-based constraint solving approaches on
inductive invariant inference [19, 20, 24, 34], the verification
algorithm described in Sec. 4.2 uses a constraint solver to
look for an inductive invariant in the form of a convex barrier
certificate [34] E (s) ≤ 0 that maps all the states in the (safe)
reachable set to non-positive reals and all the states in the
unsafe set to positive reals. The basic idea is to identify a
polynomial function E : Rn → R such that 1) E (s) > 0 for
any state s ∈ Su , 2) E (s) ≤ 0 for any state s ∈ S0, and 3)
E (s ′) − E (s) ≤ 0 for any state s that transitions to s ′ in the
state transition system C[P]. The second and third condition
collectively guarantee that E (s) ≤ 0 for any state s in the
reachable set, thus implying that an unsafe state in Su can
never be reached.
Fig. 3(a) draws the discovered invariant in blue for C[P]

given the initial and unsafe states where P is the synthesized
program for the inverted pendulum system.We can conclude
that the safety property is satisfied by the P controlled sys-
tem as all reachable states do not overlap with unsafe states.
In case verification fails, our approach conducts a counterex-
ample guided loop (Sec. 4.2) to iteratively synthesize safe
deterministic programs until verification succeeds.
Shielding. Keep in mind that a safety proof of a reduced
deterministic program of a neural network does not auto-
matically lift to a safety argument of the neural network
from which it was derived since the network may exhibit
behaviors not fully captured by the simpler deterministic
program. To bridge this divide, we propose to recover sound-
ness at runtime by monitoring system behaviors of a neural
network in its actual environment (deployment) context.

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 3. Invariant Inference on Inverted Pendulum.

Fig. 4 depicts our runtime shielding approach with more
details given in Sec. 4.3. The inductive invariant φ learnt for
a deterministic program P of a neural network πw can serve
as a shield to protect πw at runtime under the environment
context and safety property used to synthesize P. An obser-
vation about a current state is sent to both πw and the shield.
A high-performing neural network is allowed to take any ac-
tions it feels are optimal as long as the next state it proposes
is still within the safety boundary formally characterized by
the inductive invariant of C[P]. Whenever a neural policy
proposes an action that steers its controlled system out of
the state space defined by the inductive invariant we have
learned as part of deterministic program synthesis, our shield
can instead take a safe action proposed by the deterministic
program P. The action given by P is guaranteed safe be-
cause φ defines an inductive invariant of C[P]; taking the
action allows the system to stay within the provably safe re-
gion identified by φ. Our shielding mechanism is sound due
to formal verification. Because the deterministic program
was synthesized using πw as an oracle, it is expected that the
shield derived from the program will not frequently inter-
rupt the neural network’s decision, allowing the combined
system to perform (close-to) optimally.
In the inverted pendulum example, since the 90◦ bound

given as a safety constraint is rather conservative, we do not
expect a well-trained neural network to violate this boundary.
Indeed, in Fig. 3(a), even though the inductive invariant of
the synthesized program defines a substantially smaller state
space than what is permissible, in our simulation results,
we find that the neural policy is never interrupted by the
deterministic program when governing the pendulum. Note
that the non-shaded areas in Fig. 3(a), while appearing safe,
presumably define states from which the trajectory of the
system can be led to an unsafe state, and would thus not be
inductive.

Our synthesis approach is critical to ensuring safety when
the neural policy is used to predict actions in an environment
different from the one used during training. Consider a neu-
ral network suitably protected by a shield that now operates
safely. The effectiveness of this shield would be greatly di-
minished if the network had to be completely retrained from

Figure 4. The Framework of Neural Network Shielding.

scratch whenever it was deployed in a new environment
which imposes different safety constraints.

In our running example, suppose we wish to operate the
inverted pendulum in an environment such as a Segway
transporter in which the model is prohibited from swinging
significantly and whose angular velocity must be suitably
restricted. We might specify the following new constraints
on state parameters to enforce these conditions:

Su : {(η,ω) |¬(−30◦ < η < 30◦ ∧ −30◦ < ω < 30◦)}

Because of the dependence of a neural network to the quality
of training data used to build it, environment changes that
deviate from assumptions made at training-time could result
in a costly retraining exercise because the network must
learn a new way to penalize unsafe actions that were previ-
ously safe. However, training a neural network from scratch
requires substantial non-trivial effort, involving fine-grained
tuning of training parameters or even network structures.

In our framework, the existing network provides a reason-
able approximation to the desired behavior. To incorporate
the additional constraints defined by the new environment
C′, we attempt to synthesize a new deterministic program
P ′ for C′, a task based on our experience is substantially
easier to achieve than training a new neural network pol-
icy from scratch. This new program can be used to protect
the original network provided that we can use the aforemen-
tioned verification approach to formally verify that C′[P ′] is
safe by identifying a new inductive invariant φ ′. As depicted
in Fig. 4, we simply build a new shield S′ that is composed
of the program P ′ and the safety boundary captured by φ ′.
The shield S′ can ensure the safety of the neural network in
the environment context C′ with a strengthened safety con-
dition, despite the fact that the neural network was trained
in a different environment context C.
Fig. 3(b) depicts the new unsafe states in C′ (colored in

red). It extends the unsafe range draw in Fig. 3(a) so the
inductive invariant learned there is unsafe for the new one.
Our approach synthesizes a new deterministic program for
which we learn a more restricted inductive invariant de-
picted in green in Fig. 3(b). To characterize the effectiveness
of our shielding approach, we examined 1000 simulation
trajectories of this restricted version of the inverted pendu-
lum system, each of which is comprised of 5000 simulation
steps with the safety constraints defined by C′. Without the

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

shield S′, the pendulum entered the unsafe region Su 41
times. All of these violations were prevented by S′. Notably,
the intervention rate of S′ to interrupt the neural network’s
decision was extremely low. Out of a total of 5000×1000 de-
cisions, we only observed 414 instances (0.00828%) where
the shield interfered with (i.e., overrode) the decision made
by the network.

3 Problem Setup
Wemodel the context C of a control policy as an environment
state transition system C[·] = (X ,A,S,S0,Su ,Tt [·], f , r).
Note that · is intentionally left open to deploy neural control
policies. Here, X is a finite set of variables interpreted over
the reals R and S = RX is the set of all valuations of the
variables X . We denote s ∈ S to be an n-dimensional envi-
ronment state and a ∈ A to be a control action where A
is an infinite set ofm-dimensional continuous actions that
a learning-enabled controller can perform. We use S0 ∈ S
to specify a set of initial environment states and Su ∈ S
to specify a set of unsafe environment states that a safe
controller should avoid. The transition relation Tt [·] defines
how one state transitions to another given an action by an
unknown policy. We assume that Tt [·] is governed by a stan-
dard differential equation f defining the relationship between
a continuously varying state s (t) and action a(t) and its rate
of change ṡ (t) over time t :

ṡ (t) = f (s (t),a(t))

We assume f is defined by equations of the form:Rn×Rm →
Rn such as the example in Fig. 1. In the following, we often
omit the time variable t for simplicity. A deterministic neural
network control policy πw : Rn → Rm parameterized by a
set of weight valuesw is a function mapping an environment
state s to a control action a where

a = πw (s)

By providing a feedback action, a policy can alter the rate of
change of state variables to realize optimal system control.

The transition relation Tt [·] is parameterized by a control
policy π that is deployed in C. We explicitly model this
deployment as Tt [π]. Given a control policy πw, we use
Tt [πw] : S×S to specify all possible state transitions allowed
by the policy. We assume that a system transitions in discrete
time instants kt where k = 0, 1, 2, · · · and t is a fixed time
step (t > 0). A state s transitions to a next state s ′ after time
t with the assumption that a control action a(τ) at time τ is
a constant between the time period τ ∈ [0, t). Using Euler’s
method2, we discretize the continuous dynamics f with finite
difference approximation so it can be used in the discretized

2Euler’s method may sometimes poorly approximate the true system tran-
sition function when f is highly nonlinear. More precise higher-order ap-
proaches such as Runge-Kutta methods exist to compensate for loss of
precision in this case.

transition relation Tt [πw]. Then Tt [πw] can compute these
estimates by the following difference equation:

Tt [πw] := {(s, s ′) | s ′ = s + f (s,πw (s)) × t }

Environment Disturbance. Our model allows bounded
external properties (e.g., additional environment-imposed
constraints) by extending the definition of change of rate: ṡ =
f (s,a)+d whered is a vector of random disturbances.We use
d to encode environment disturbances in terms of bounded
nondeterministic values. We assume that tight upper and
lower bounds of d can be accurately estimated at runtime
using multivariate normal distribution fitting methods.
Trajectory.A trajectoryh of a state transition system C[πw]
which we denote as h ∈ C[πw] is a sequence of states
s0, · · · , si , si+1, · · · where s0 ∈ S0 and (si , si+1) ∈ Tt [πw] for
all i ≥ 0. We use C ⊆ C[πw] to denote a set of trajectories.
The reward that a control policy receives on performing an
action a in a state s is given by the reward function r (s,a).
Reinforcement Learning. The goal of reinforcement learn-
ing is to maximize the reward that can be collected by a neu-
ral control policy in a given environment context C. Such
problems can be abstractly formulated as

max
w∈Rn

J (w)

J (w) = E[r (πw)]
(3)

Assume that s0, s1, . . . , sT is a trajectory of length T of the
state transition system and r (πw) = lim

T→∞
ΣTk=0r (sk ,πw (sk))

is the cumulative reward achieved by the policy πw from
this trajectory. Thus this formulation uses simulations of
the transition system with finite length rollouts to estimate
the expected cumulative reward collected over T time steps
and aim to maximize this reward. Reinforcement learning
assumes polices are expressible in some executable structure
(e.g. a neural network) and allows samples generated from
one policy to influence the estimates made for others. The
two main approaches for reinforcement learning are value
function estimation and direct policy search.We refer readers
to [27] for an overview.
Safety Verification. Since reinforcement learning only con-
siders finite length rollouts, we wish to determine if a control
policy is safe to use under an infinite time horizon. Given
a state transition system, the safety verification problem is
concerned with verifying that no trajectories contained in S
starting from an initial state inS0 reach an unsafe state inSu .
However, a neural network is a representative of a class of
deep and sophisticated models that challenges the capability
of the state-of-the-art verification techniques. This level of
complexity is exacerbated in our work because we consider
the long term safety of a neural policy deployed within a
nontrivial environment context C that in turn is described
by a complex infinite-state transition system.

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

E ::= v | x | ⊕ (E1, . . . ,Ek)

φ ::= E ≤ 0
P ::= return E | if φ then return E else P

Figure 5. Syntax of the Policy Programming Language.

4 Verification Procedure
To verify a neural network control policy πw with respect to
an environment context C, we first synthesize a deterministic
policy program P from the neural policy. We require that P
both (a) broadly resembles its neural oracle and (b) addition-
ally satisfies a desired safety property when it is deployed
in C. We conjecture that a safety proof of C[P] is easier to
construct than that of C[πw]. More importantly, we leverage
the safety proof of C[P] to ensure the safety of C[πw].

4.1 Synthesis
Fig. 5 defines a search space for a deterministic policy pro-
gram P where E and φ represent the basic syntax of (polyno-
mial) program expressions and inductive invariants, respec-
tively. Here v ranges over a universe of numerical constants,
x represents variables, and ⊕ is a basic operator including +
and ×. A deterministic program P also features conditional
statements using φ as branching predicates.
We allow the user to define a sketch [41, 42] to describe

the shape of target policy programs using the grammar in
Fig. 5. We use P[θ] to represent a sketch where θ represents
unknowns that need to be filled-in by the synthesis proce-
dure. We use Pθ to represent a synthesized program with
known values of θ . Similarly, the user can define a sketch of
an inductive invariant φ[·] that is used (in Sec. 4.2) to learn
a safety proof to verify a synthesized program Pθ .

We do not require the user to explicitly define conditional
statements in a program sketch. Our synthesis algorithmuses
verification counterexamples to lazily add branch predicates
φ under which a program performs different computations
depending on whether φ evaluates to true or false. The end
user simply writes a sketch over basic expressions. For ex-
ample, a sketch that defines a family of linear function over
a collection of variables can be expressed as:

P[θ](X) ::= return θ1x1 + θ2x2 + · · · + θnxn + θn+1 (4)

Here X = (x1,x2, · · ·) are system variables in which the
coefficient constants θ = (θ1,θ2, · · ·) are unknown.
The goal of our synthesis algorithm is to find unknown

values of θ that maximize the likelihood that Pθ resembles
the neural oracle πw while still being a safe program with
respect to the environment context C:

θ ∗ = argmax
θ ∈Rn+1

d (πw,Pθ ,C) (5)

Algorithm 1: Synthesize (πw, P[θ], C[·])
1 θ ← 0;
2 do
3 Sample δ from a zero mean Gaussian vector;
4 Sample a set of trajectories C1 using C[Pθ+νδ];
5 Sample a set of trajectories C2 using C[Pθ−νδ];
6 θ ← θ + α[d (πw,Pθ+νδ ,C1)−d (πw,Pθ−νδ ,C2)

ν]δ ;
7 while θ is not converged;
8 return Pθ

where d measures the distance between the outputs of the
estimate program Pθ and the neural policy πw subject to
safety constraints. To avoid the computational complexity
that arises if we consider a solution to this equation analyti-
cally as an optimization problem, we instead approximate
d (πw,Pθ ,C) by randomly sampling a set of trajectories C
that are encountered by Pθ in the environment state transi-
tion system C[Pθ]:

d (πw,Pθ ,C) ≈ d (πw,Pθ ,C) s .t . C ⊆ C[Pθ]

We estimate θ ∗ using these sampled trajectoriesC and define:

d (πw,Pθ ,C) =
∑
h∈C

d (πw,Pθ ,h)

Since each trajectory h ∈ C is a finite rollout s0, . . . , sT of
length T , we have:

d (πw,Pθ ,h) =
T∑
t=0

− ∥ (Pθ (st) − πw (st))∥ st < Su

−MAX st ∈ Su

where ∥·∥ is a suitable norm. As illustrated in Sec. 2.2, we
aim to minimize the distance between a synthesized program
Pθ from a sketch space and its neural oracle along sampled
trajectories encountered by Pθ in the environment context
but put a large penalty on states that are unsafe.
Random Search.We implement the idea encoded in equa-
tion (5) in Algorithm 1 that depicts the pseudocode of our
policy interpretation approach. It take as inputs a neural
policy, a policy program sketch parameterized by θ , and an
environment state transition system and outputs a synthe-
sized policy program Pθ .

An efficient way to solve equation (5) is to directly perturb
θ in the search space by adding random noise and then
update θ based on the effect on this perturbation [30]. We
choose a direction uniformly at random on the sphere in
parameter space, and then optimize the goal function along
this direction. To this end, in line 3 of Algorithm 1, we sample
Gaussian noise δ to be added to policy parameters θ in both
directions where ν is a small positive real number. In line 4
and line 5, we sample trajectories C1 and C2 from the state
transition systems obtained by running the perturbed policy
program Pθ+νδ and Pθ−νδ in the environment context C.

We evaluate the proximity of these two policy programs to
the neural oracle and, in line 6 of Algorithm 1, to improve the

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

policy program, we also optimize equation (5) by updating θ
with a finite difference approximation along the direction:

θ ← θ + α[
d (Pθ+νδ ,πw,C1) − d (Pθ−νδ ,πw,C2)

ν
]δ (6)

where α is a predefined learning rate. Such an update incre-
ment corresponds to an unbiased estimator of the gradient of
θ [29, 33] for equation (5). The algorithm iteratively updates
θ until convergence.

4.2 Verification
A synthesized policy program P is verified with respect to an
environment context given as an infinite state transition sys-
tem defined in Sec. 3: C[P] = (X ,A,S,S0,Su ,Tt [P], f , r).
Our verification algorithm learns an inductive invariant φ
over the transition relation Tt [P] formally proving that all
possible system behaviors are encapsulated in φ and φ is
required to be disjoint with all unsafe states Su .
We follow template-based constraint solving approaches

for inductive invariant inference [19, 20, 24, 34] to discover
this invariant. The basic idea is to identify a function E :
Rn → R that serves as a "barrier" [20, 24, 34] between reach-
able system states (evaluated to be nonpositive by E), and
unsafe states (evaluated positive by E). Using the invariant
syntax in Fig. 5, the user can define an invariant sketch

φ[c](X) ::= E[c](X) ≤ 0 (7)

over variables X and c unknown coefficients intended to be
synthesized. Fig. 5 carefully restricts that an invariant sketch
E[c] can only be postulated as a polynomial function as there
exist efficient SMT solvers [13] and constraint solvers [26]
for nonlinear polynomial reals. Formally, assume real coef-
ficients c = (c0, · · · , cp) are used to parameterize E[c] in an
affine manner:

E[c](X) = Σ
p
i=0cibi (X)

where the bi (X)’s are some monomials in variables X . As a
heuristic, the user can simply determine an upper bound on
the degree of E[c], and then include all monomials whose
degrees are no greater than the bound in the sketch. Large
values of the bound enable verification of more complex
safety conditions, but impose greater demands on the con-
straint solver; small values capture coarser safety properties,
but are easier to solve.

Example 4.1. Consider the inverted pendulum system in
Sec. 2.2. To discover an inductive invariant for the transition
system, the user might choose to define an upper bound of 4,
which results in the following polynomial invariant sketch:
φ[c](η,ω) ::= E[c](η,ω) ≤ 0 where

E[c](η,ω) = c0η4+c1η3ω+c2η2ω2+c3ηω
3+c4ω

4+c5η
3+· · ·+cp

The sketch includes all monomials over η and ω, whose de-
grees are no greater than 4. The coefficients c = [c0, · · · , cp]
are unknown and need to be synthesized.

To synthesize these unknowns, we require that E[c] must
satisfy the following verification conditions:

∀(s) ∈ Su E[c](s) > 0 (8)
∀(s) ∈ S0 E[c](s) ≤ 0 (9)
∀(s, s ′) ∈ Tt [P] E[c](s ′) − E[c](s) ≤ 0. (10)

We claim that φ ::= E[c](x) ≤ 0 defines an inductive in-
variant because verification condition (9) ensures that any
initial state s0 ∈ S0 satisfies φ since E[c](s0) ≤ 0; verification
condition (10) asserts that along the transition from a state
s ∈ φ (so E[c](s) ≤ 0) to a resulting state s ′, E[c] cannot
become positive so s ′ satisfies φ as well. Finally, according
to verification condition (8), φ does not include any unsafe
state su ∈ Su as E[c](su) is positive.

Verification conditions (8) (9) (10) are polynomials over re-
als. Synthesizing unknown coefficients can be left to an SMT
solver [13] after universal quantifiers are eliminated using a
variant of Farkas Lemma as in [20]. However, observe that
E[c] is convex.3 We can gain efficiency by finding unknown
coefficients c using off-the-shelf convex constraint solvers
following [34]. Encoding verification conditions (8) (9) (10)
as polynomial inequalities, we search c that can prove non-
negativity of these constraints via an efficient and convex
sum of squares programming solver [26]. Additional techni-
cal details are provided in the supplementary material [49].
Counterexample-guided Inductive Synthesis (CEGIS).
Given the environment state transition system C[P] de-
ployed with a synthesized program P, the verification ap-
proach above can compute an inductive invariant over the
state transition system or tell if there is no feasible solution
in the given set of candidates. Note however that the latter
does not necessarily imply that the system is unsafe.
Since our goal is to learn a safe deterministic program

from a neural network, we develop a counterexample guided
inductive program synthesis approach. A CEGIS algorithm
in our context is challenging because safety verification is
necessarily incomplete, and may not be able to produce a
counterexample that serves as an explanation for why a
verification attempt is unsuccessful.

We solve the incompleteness challenge by leveraging the
fact that we can simultaneously synthesize and verify a
program. Our CEGIS approach is given in Algorithm 2. A
counterexample is an initial state on which our synthesized
program is not yet proved safe. Driven by these counterex-
amples, our algorithm synthesizes a set of programs from a
sketch along with the conditions under which we can switch
from from one synthesized program to another.

Algorithm 2 takes as input a neural policy πw, a program
sketch P[θ] and an environment context C. It maintains syn-
thesized policy programs in policies in line 1, each of which
is inductively verified safe in a partition of the universe state

3For arbitrary E1 (x) and E2 (x) satisfying the verification conditions and
α ∈ [0, 1], E (x) = αE1 (x) + (1 − α)E2 (x) satisfies the conditions as well.

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Algorithm 2: CEGIS (πw, P[θ], C[·])
1 policies← ∅;
2 covers← ∅;
3 while C.S0 ⊈ covers do
4 search s0 such that s0 ∈ C.S0 ∧ s0 < covers;
5 r∗ ← Diameter(C.S0);
6 do
7 ϕbound ← {s | s ∈ {s0 − r

∗, s0 + r∗}};
8 C̃ ← C where C̃.S0 = (C.S0 ∩ ϕbound);
9 θ ← Synthesize(πw, P[θ], C̃[·]);

10 φ ← Verify(C̃[Pθ]);
11 if φ is False then
12 r∗ ← r∗/2;
13 else
14 covers← covers ∪ {s | φ (s)};
15 policies← policies ∪ (Pθ , φ);
16 break;
17 while True;
18 end
19 return policies

space that is maintained in covers in line 2. For soundness,
the state space covered by such partitions must be able to
include all initial states, checked in line 3 of Algorithm 2 by
an SMT solver. In the algorithm, we use C.S0 to access a
field of C such as its initial state space.

The algorithm iteratively samples a counterexample initial
state s0 that is currently not covered by covers in line 4. Since
covers is empty at the beginning, this choice is uniformly
random initially; we synthesize a presumably safe policy
program in line 9 of Algorithm 2 that resembles the neural
policy πw considering all possible initial states S0 of the
given environment model C, using Algorithm 1.

If verification fails in line 11, our approach simply reduces
the initial state space, hoping that a safe policy program is
easier to synthesize if only a subset of initial states are con-
sidered. The algorithm in line 12 gradually shrinks the radius
r ∗ of the initial state space around the sampled initial state
s0. The synthesis algorithm in the next iteration synthesizes
and verifies a candidate using the reduced initial state space.
The main idea is that if the initial state space is shrunk to
a restricted area around s0 but a safety policy program still
cannot be found, it is quite possible that either s0 points to
an unsafe initial state of the neural oracle or the sketch is
not sufficiently expressive.
If verification at this stage succeeds with an inductive

invariant φ, a new policy program Pθ is synthesized that
can be verified safe in the state space covered by φ. We add
the inductive invariant and the policy program into covers
and policies in line 14 and 15 respectively and then move to
another iteration of counterexample-guided synthesis. This
iterative synthesize-and-verify process continues until the

Figure 6. CEGIS for Verifiable Reinforcement Learning.

entire initial state space is covered (line 3 to 18). The output
of Algorithm 2 is [(Pθ 1,φ1), (Pθ 2,φ2), · · ·] that essentially
defines conditional statements in a synthesized program per-
forming different actions depending on whether a specified
invariant condition evaluates to true or false.

Theorem4.2. IfCEGIS (πw ,P[θ],C[·]) = [(Pθ 1,φ1), (Pθ 2,
φ2), · · ·] (as defined in Algorithm 2), then the deterministic
program P:

λX .if φ1 (X): return Pθ 1 (X) else if φ2 (X): return Pθ 2 (X) · · ·

is safe in the environment C meaning that φ1 ∨ φ2 ∨ · · · is an
inductive invariant of C[P] proving that C.Su is unreachable.

Example 4.3. We illustrate the proposed counterexample
guided inductive synthesis method by means of a simple ex-
ample, the Duffing oscillator [22], a nonlinear second-order
environment. The transition relation of the environment
system C is described with the differential equation:

ẋ = y

ẏ = −0.6y − x − x3 + a
where x ,y are the state variables and a the continuous con-
trol action given by a well-trained neural feedback con-
trol policy π such that a = π (x ,y). The control objective
is to regulate the state to the origin from a set of initial
states C.S0 : {x ,y | − 2.5 ≤ x ≤ 2.5 ∧ −2 ≤ y ≤ 2}. To
be safe, the controller must be able to avoid a set of un-
safe states C.Su : {x ,y | ¬(−5 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5)}.
Given a program sketch as in the pendulum example, that
is P[θ](x ,y) ::= θ1x + θ2y, the user can ask the constraint
solver to reason over a small (say 4) order polynomial invari-
ant sketch for a synthesized program as in Example 4.1.
Algorithm 2 initially samples an initial state s as {x =

−0.46,y = −0.36} from S0. The inner do-while loop of the
algorithm can discover a sub-region of initial states in the
dotted box of Fig. 6(a) that can be leveraged to synthesize a
verified deterministic policy P1 (x ,y) ::= 0.39x − 1.41y from
the sketch. We also obtain an inductive invariant showing
that the synthesized policy can always maintain the con-
troller within the invariant set drawn in purple in Fig. 6(a):

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

φ1 ≡ 20.9x4 + 2.9x3y + 1.4x2y2 + 0.4xy3 + 29.6x3 + 20.1x2y +
11.3xy2 + 1.6y3 + 25.2x2 + 39.2xy + 53.7y2 − 680 ≤ 0.

This invariant explains why the initial state space used
for verification does not include the entire C.S0: a coun-
terexample initial state s ′ = {x = 2.249,y = 2} is not cov-
ered by the invariant for which the synthesized policy pro-
gram above is not verified safe. The CEGIS loop in line 3
of Algorithm 2 uses s ′ to synthesize another deterministic
policy P2 (x ,y) ::= 0.88x − 2.34y from the sketch whose
learned inductive invariant is depicted in blue in Fig. 2(b):
φ2 ≡ 12.8x4 + 0.9x3y − 0.2x2y2 − 5.9x3 − 1.5xy2 − 0.3y3 +
2.2x2 + 4.7xy + 40.4y2 − 619 ≤ 0. Algorithm 2 then termi-
nates because φ1 ∨ φ2 covers C.S0. Our system interprets
the two synthesized deterministic policies as the following
deterministic program Poscillator using the syntax in Fig. 5:
def Poscillator (x, y):

if 20.9x 4 + 2.9x 3y + 1.4x 2y2 + · · · + 53.7y2 − 680 ≤ 0: # φ1
return 0.39x − 1.41y

else if 12.8x 4 + 0.9x 3y − 0.2x 2y2 + · · · + 40.4y2 − 619 ≤ 0: # φ2
return 0.88x − 2.34y

else abort # unsafe

Neither of the two deterministic policies enforce safety by
themselves on all initial states but do guarantee safety when
combined together because by construction, φ = φ1 ∨ φ2 is
an inductive invariant of Poscillator in the environment C.
Although Algorithm 2 is sound, it may not terminate as

r ∗ in the algorithm can become arbitrarily small and there
is also no restriction on the size of potential counterexam-
ples. Nonetheless, our experimental results indicate that the
algorithm performs well in practice.

4.3 Shielding
A safety proof of a synthesized deterministic program of
a neural network does not automatically lift to a safety ar-
gument of the neural network from which it was derived
since the network may exhibit behaviors not captured by
the simpler deterministic program. To bridge this divide, we
recover soundness at runtime by monitoring system behav-
iors of a neural network in its environment context by using
the synthesized policy program and its inductive invariant
as a shield. The pseudo-code for using a shield is given in
Algorithm 3. In line 1 of Algorithm 3, for a current state s , we
use the state transition system of our environment context
model to predict the next state s ′. If s ′ is not within φ, we
are unsure whether entering s ′ would inevitably make the
system unsafe as we lack a proof that the neural oracle is
safe. However, we do have a guarantee that if we follow the
synthesized program P, the system would stay within the
safety boundary defined by φ that Algorithm 2 has formally
proved. We do so in line 3 of Algorithm 3, using P and φ
as shields, intervening only if necessary so as to restrict the
shield from unnecessarily intervening the neural policy. 4

4We also extended our approach to synthesize deterministic programswhich
can guarantee stability in the supplementary material [49].

Algorithm 3: Shield (s , C[πw], P, φ)
1 Predict s ′ such that (s, s ′) ∈ C[πw].Tt (s);
2 if φ (s ′) then return πw (s) ;
3 else return P (s) ;

5 Experimental Results
We have applied our framework on a number of challenging
control- and cyberphysical-system benchmarks. We consider
the utility of our approach for verifying the safety of trained
neural network controllers. We use the deep policy gradi-
ent algorithm [28] for neural network training, the Z3 SMT
solver [13] to check convergence of the CEGIS loop, and
the Mosek constraint solver [6] to generate inductive in-
variants of synthesized programs from a sketch. All of our
benchmarks are verified using the program sketch defined in
equation (4) and the invariant sketch defined in equation (7).
We report simulation results on our benchmarks over 1000
runs (each run consists of 5000 simulation steps). Each simu-
lation time step is fixed 0.01 second. Our experiments were
conducted on a standard desktop machine consisting of In-
tel(R) Core(TM) i7-8700 CPU cores and 64GB memory.

Case Study on Inverted Pendulum. We first give more de-
tails on the evaluation result of our running example, the
inverted pendulum.Herewe consider amore restricted safety
condition that deems the system to be unsafe when the pen-
dulum’s angle is more than 23◦ from the origin (i.e., signif-
icant swings are further prohibited). The controller is a 2
hidden-layer neural model (240×200). Our tool interprets the
neural network as a program containing three conditional
branches:

def P (η, ω):
if 17533η4 + 13732η3ω + 3831η2ω2 − 5472ηω3 + 8579ω4 + 6813η3+

9634η2ω + 3947ηω2 − 120ω3 + 1928η2 + 1915ηω + 1104ω2 − 313 ≤ 0:
return −17.28176866η − 10.09441768ω

else if 2485η4 + 826η3ω − 351η2ω2 + 581ηω3 + 2579ω4 + 591η3+
9η2ω + 243ηω2 − 189ω3 + 484η2 + 170ηω + 287ω2 − 82 ≤ 0:

return −17.34281984x − 10.73944835y
else if 115496η4 + 64763η3ω + 85376η2ω2 + 21365ηω3 + 7661ω4−

111271η3 − 54416η2ω − 66684ηω2 − 8742ω3 + 33701η2+
11736ηω + 12503ω2 − 1185 ≤ 0:

return −25.78835525η − 16.25056971ω
else abort

Over 1000 simulation runs, we found 60 unsafe cases when
running the neural controller alone. Importantly, running
the neural controller in tandem with the above verified and
synthesized program can prevent all unsafe neural decisions.
There were only with 65 interventions from the program on
the neural network. Our results demonstrate that CEGIS is
important to ensure a synthesized program is safe to use. We
report more details including synthesis times below.

One may ask why we do not directly learn a deterministic
program to control the device (without appealing to the neu-
ral policy at all), using reinforcement learning to synthesize
its unknown parameters. Even for an example as simple as

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 1. Experimental Results on Deterministic Program Synthesis, Verification, and Shielding.

Neural Network Deterministic Program as Shield PerformanceBenchmarks Vars Size Training Failures Size Synthesis Overhead Interventions NN Program
Satellite 2 240 × 200 957s 0 1 160s 3.37% 0 5.7 9.7
DCMotor 3 240 × 200 944s 0 1 68s 2.03% 0 11.9 12.2
Tape 3 240 × 200 980s 0 1 42s 2.63% 0 3.0 3.6
Magnetic Pointer 3 240 × 200 992s 0 1 85s 2.92% 0 8.3 8.8
Suspension 4 240 × 200 960s 0 1 41s 8.71% 0 4.7 6.1
Biology 3 240 × 200 978s 0 1 168s 5.23% 0 2464 2599
DataCenter Cooling 3 240 × 200 968s 0 1 168s 4.69% 0 14.6 40.1
Quadcopter 2 300 × 200 990s 182 2 67s 6.41% 185 7.2 9.8
Pendulum 2 240 × 200 962s 60 3 1107s 9.65% 65 44.2 58.6
CartPole 4 300 × 200 990s 47 4 998s 5.62% 1799 681.3 1912.6
Self-Driving 4 300 × 200 990s 61 1 185s 4.66% 236 145.9 513.6
Lane Keeping 4 240 × 200 895s 36 1 183s 8.65% 64 375.3 643.5
4-Car platoon 8 500 × 400 × 300 1160s 8 4 609s 3.17% 8 7.6 9.6
8-Car platoon 16 500 × 400 × 300 1165s 40 1 1217s 6.05% 1080 38.5 55.4
Oscillator 18 240 × 200 1023s 371 1 618s 21.31% 93703 693.5 1135.3

the inverted pendulum, our discussion above shows that it
is difficult (if not impossible) to derive a single straight-line
(linear) program that is safe to control the system. Even for
scenarios in which a straight-line program suffices, using ex-
isting RL methods to directly learn unknown parameters in
our sketches may still fail to obtain a safe program. For exam-
ple, we considered if a linear control policy can be learned to
(1) prevent the pendulum from falling down (2) and require
a pendulum control action to be strictly within the range
[−1, 1] (e.g., operating the controller in an environment with
low power constraints). We found that despite many experi-
ments on tuning learning rates and rewards, directly training
a linear control program to conform to this restriction with
either reinforcement learning (e.g. policy gradient) or ran-
dom search [29] was unsuccessful because of undesirable
overfitting. In contrast, neural networks work much better
for these RL algorithms and can be used to guide the syn-
thesis of a deterministic program policy. Indeed, by treating
the neural policy as an oracle, we were able to quickly dis-
cover a straight-line linear deterministic program that in fact
satisfies this additional motion constraint.

Safety Verification. Our verification results are given in
Table 1. In the table, Vars represents the number of variables
in a control system - this number serves as a proxy for ap-
plication complexity; Size the number of neurons in hidden
layers of the network; the Training time for the network;
and, its Failures, the number of times the network failed to
satisfy the safety property in simulation. The table also gives
the Size of a synthesized program in term of the number
of polices found by Algorithm 2 (used to generate condi-
tional statements in the program); its Synthesis time; the
Overhead of our approach in terms of the additional cost
(compared to the non-shielded variant) in running time to
use a shield; and, the number of Interventions, the number

of times the shield was invoked across all simulation runs.
We also report performance gap between of a shield neural
policy (NN) and a purely programmatic policy (Program),
in terms of the number of steps on average that a controlled
system spends in reaching a steady state of the system (i.e.,
a convergence state).

The first five benchmarks are linear time-invariant control
systems adapted from [15]. The safety property is that the
reach set has to be within a safe rectangle. Benchmark Biol-
ogy defines a minimal model of glycemic control in diabetic
patients such that the dynamics of glucose and insulin inter-
action in the blood system are defined by polynomials [10].
For safety, we verify that the neural controller ensures that
the level of plasma glucose concentration is above a certain
threshold. Benchmark DataCenter Cooling is a model of a
collection of three server racks each with their own cooling
devices and they also shed heat to their neighbors. The safety
property is that a learned controller must keep the data cen-
ter below a certain temperature. In these benchmarks, the
cost to query the network oracle constitutes the dominant
time for generating the safety shield in these benchmarks.
Given the simplicity of these benchmarks, the neural net-
work controllers did not violate the safety condition in our
trials, and moreover there were no interventions from the
safety shields that affected performance.
The next three benchmarksQuadcopter, (Inverted) Pen-

dulum and Cartpole are selected from classic control appli-
cations and have more sophisticated safety conditions. We
have discussed the inverted pendulum example at length
earlier. The Quadcopter environment tests whether a con-
trolled quadcopter can realize stable flight. The environment
of Cartpole consists of a pole attached to an unactuated joint
connected to a cart that moves along a frictionless track.
The system is unsafe when the pole’s angle is more than

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

30◦ from being upright or the cart moves by more than 0.3
meters from the origin. We observed safety violations in each
of these benchmarks that were eliminated using our verifi-
cation methodology. Notably, the number of interventions
is remarkably low, as a percentage of the overall number of
simulation steps.
Benchmark Self-driving defines a single car navigation

problem. The neural controller is responsible for prevent-
ing the car from veering into canals found on either side of
the road. Benchmark Lane Keeping models another safety-
related car-driving problem. The neural controller aims to
maintain a vehicle between lane markers and keep it cen-
tered in a possibly curved lane. The curvature of the road is
considered as a disturbance input. Environment disturbances
of such kind can be conservatively specified in our model,
accounting for noise and unmodeled dynamics. Our verifi-
cation approach supports these disturbances (verification
condition (10)). Benchmarks n-Car platoon model multiple
(n) vehicles forming a platoon, maintaining a safe relative
distance among one another [39]. Each of these benchmarks
exhibited some number of violations that were remediated
by our verification methodology. Benchmark Oscillator con-
sists of a two-dimensional switched oscillator plus a 16-order
filter. The filter smoothens the input signals and has a sin-
gle output signal. We verify that the output signal is below
a safe threshold. Because of the model complexity of this
benchmark, it exhibited significantly more violations than
the others. Indeed, the neural-network controlled system
often oscillated between the safe and unsafe boundary in
many runs. Consequently, the overhead in this benchmark
is high because a large number of shield interventions was
required to ensure safety. In other words, the synthesized
shield trades performance for safety to guarantee that the
threshold boundary is never violated.
For all benchmarks, our tool successfully generated safe

interpretable deterministic programs and inductive invari-
ants as shields. When a neural controller takes an unsafe
action, the synthesized shield correctly prevents this action
from executing by providing an alternative provable safe
action proposed by the verified deterministic program. In
term of performance, Table 1 shows that a shielded neural
policy is a feasible approach to drive a controlled system into
a steady state. For each of the benchmarks studied, the pro-
grammatic policy is less performant than the shielded neural
policy, sometimes by a factor of two or more (e.g., Cartpole,
Self-Driving, and Oscillator). Our result demonstrates that
executing a neural policy in tandem with a program distilled
from it can retain performance, provided by the neural policy,
while maintaining safety, provided by the verified program.

Although our synthesis algorithm does not guarantee con-
vergence to the global minimum when applied to nonconvex
RL problems, the results given in Table 1 indicate that our
algorithm can often produce high-quality control programs,
with respect to a provided sketch, that converge reasonably

Table 2. Experimental Results on Tuning Invariant Degrees.
TO means that an adequate inductive invariant cannot be
found within 2 hours.

Benchmarks Degree Verification Interventions Overhead

Pendulum
2 TO - -
4 22.6s 40542 7.82%
8 23.6s 30787 8.79%

Self-Driving
2 TO - -
4 24s 128851 6.97%
8 25.1s 123671 26.85%

8-Car-platoon
2 172.9s 43952 8.36%
4 540.2s 37990 9.19%
8 TO - -

fast. In some of our benchmarks, however, the number of
interventions are significantly higher than the number of
neural controller failures, e.g., 8-Car platoon and Oscillator.
However, the high number of interventions is not primar-
ily because of non-optimality of the synthesized program-
matic controller. Instead, inherent safety issues in the neural
network models are the main culprit that triggers shield
interventions. In 8-Car platoon, after corrections made by
our deterministic program, the neural model again takes an
unsafe action in the next execution step so that the deter-
ministic program has to make another correction. It is only
after applying a number of such shield interventions that the
system navigates into a part of the state space that can be
safely operated on by the neural model. For this benchmark,
all system states where there occur shield interventions are
indeed unsafe. We also examined the unsafe simulation runs
made by executing the neural controller alone in Oscillator.
Among the large number of shield interventions (as reflected
in Table 1), 74% of them are effective and indeed prevent an
unsafe neural decision. Ineffective interventions inOscillator
are due to the fact that, when optimizing equation (5), a large
penalty is given to unsafe states, causing the synthesized
programmatic policy to weigh safety more than proximity
when there exist a large number of unsafe neural decisions.

Suitable Sketches. Providing a suitable sketch may need
domain knowledge. To help the user more easily tune the
shape of a sketch, our approach provides algorithmic support
by not requiring conditional statements in a program sketch
and syntactic sugar, i.e., the user can simply provide an upper
bound on the degree of an invariant sketch.
Our experimental results are collected using the invari-

ant sketch defined in equation (7) and we chose an upper
bound of 4 on the degree of all monomials included in the
sketch. Recall that invariants may also be used as conditional
predicates as part of a synthesized program. We adjust the
invariant degree upper bound to evaluate its effect in our
synthesis procedure. The results are given in Table 2.

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 3. Experimental Results on Handling Environment Changes.

Neural Network Deterministic Program as ShieldBenchmarks Environment Change Size Failures Size Synthesis Overhead Shield Interventions
Cartpole Increased Pole length by 0.15m 1200 × 900 3 1 239s 2.91% 8
Pendulum Increased Pendulum mass by 0.3kg 1200 × 900 77 1 581s 8.11% 8748
Pendulum Increased Pendulum length by 0.15m 1200 × 900 76 1 483s 6.53% 7060
Self-driving Added an obstacle that must be avoided 1200 × 900 203 1 392s 8.42% 108320

Generally, high-degree invariants lead to fewer interven-
tions because they tend to be more permissive than low-
degree ones. However, high-degree invariants take more
time to synthesize and verify. This is particularly true for
high-dimension models such as 8-Car platoon. Moreover,
although high-degree invariants tend to have fewer inter-
ventions, they have larger overhead. For example, using a
shield of degree 8 in the Self-Driving benchmark caused
an overhead of 26.85%. This is because high-degree polyno-
mial computations are time-consuming. On the other hand,
an insufficient degree upper bound may not be permissive
enough to obtain a valid invariant. It is, therefore, essential to
consider the tradeoff between overhead and permissiveness
when choosing the degree of an invariant.

Handling Environment Changes. We consider the effec-
tiveness of our tool when previously trained neural network
controllers are deployed in environment contexts different
from the environment used for training. Here we consider
neural network controllers of larger size (two hidden layers
with 1200 × 900 neurons) than in the above experiments.
This is because we want to ensure that a neural policy is
trained to be near optimal in the environment context used
for training. These larger networks were in general more
difficult to train, requiring at least 1500 seconds to converge.
Our results are summarized in Table 3. When the under-

lying environment sightly changes, learning a new safety
shield takes substantially shorter time than training a new
network. For Cartpole, we simulated the trained controller
in a new environment by increasing the length of the pole by
0.15 meters. The neural controller failed 3 times in our 1000
episode simulation; the shield interfered with the network
operation only 8 times to prevent these unsafe behaviors.
The new shield was synthesized in 239s significantly faster
than retraining a new neural network for the new environ-
ment. For (Inverted) Pendulum, we deployed the trained
neural network in an environment in which the pendulum’s
mass is increased by 0.3kg. The neural controller exhibits
noticeably higher failure rates than in the previous experi-
ment; we were able to synthesize a safety shield adapted to
this new environment in 581 seconds that prevented these
violations. The shield intervened with the operation of the
network only 8.7 number of times per episode. Similar results
were observed when we increased the pendulum’s length
by 0.15m. For Self-driving, we additionally required the car

to avoid an obstacle. The synthesized shield provided safe
actions to ensure collision-free motion.

6 Related Work
Verification of Neural Networks.While neural networks
have historically found only limited application in safety-
and security-related contexts, recent advances have defined
suitable verification methodologies that are capable of pro-
viding stronger assurance guarantees. For example, Relu-
plex [23] is an SMT solver that supports linear real arithmetic
with ReLU constraints and has been used to verify safety
properties in a collision avoidance system. AI2 [17, 31] is an
abstract interpretation tool that can reason about robustness
specifications for deep convolutional networks. Robustness
verification is also considered in [8, 21]. Systematic testing
techniques such as [43, 45, 48] are designed to automati-
cally generate test cases to increase a coverage metric, i.e.,
explore different parts of neural network architecture by gen-
erating test inputs that maximize the number of activated
neurons. These approaches ignore effects induced by the
actual environment in which the network is deployed. They
are typically ineffective for safety verification of a neural
network controller over an infinite time horizon with com-
plex system dynamics. Unlike these whitebox efforts that
reason over the architecture of the network, our verification
framework is fully blackbox, using a network only as an
oracle to learn a simpler deterministic program. This gives
us the ability to reason about safety entirely in terms of the
synthesized program, using a shielding mechanism derived
from the program to ensure that the neural policy can only
explore safe regions.
SafeReinforcement Learning.Themachine learning com-
munity has explored various techniques to develop safe rein-
forcement machine learning algorithms in contexts similar
to ours, e.g., [32, 46]. In some cases, verification is used as a
safety validation oracle [2, 11]. In contrast to these efforts,
our inductive synthesis algorithm can be freely incorporated
into any existing reinforcement learning framework and
applied to any legacy machine learning model. More impor-
tantly, our design allows us to synthesize new shields from
existing ones, without requiring retraining of the network,
under reasonable changes to the environment.
Syntax-Guided Synthesis forMachine Learning.An im-
portant reason underlying the success of program synthesis

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

is that sketches of the desired program [41, 42], often pro-
vided along with example data, can be used to effectively
restrict a search space and allow users to provide additional
insight about the desired output [5]. Our sketch based induc-
tive synthesis approach is a realization of this idea applicable
to continuous and infinite state control systems central to
many machine learning tasks. A high-level policy language
grammar is used in our approach to constrain the shape
of possible synthesized deterministic policy programs. Our
program parameters in sketches are continuous, because
they naturally fit continuous control problems. However,
our synthesis algorithm (line 9 of Algorithm 2) can call a
derivate-free random search method (which does not require
the gradient or its approximative finite difference) for syn-
thesizing functions whose domain is disconnected, (mixed-
)integer, or non-smooth. Our synthesizer thusmay be applied
to other domains that are not continuous or differentiable
like most modern program synthesis algorithms [41, 42].
In a similar vein, recent efforts on interpretable machine

learning generate interpretable models such as program
code [47] or decision trees [9] as output, after which tra-
ditional symbolic verification techniques can be leveraged
to prove program properties. Our approach novelly ensures
that only safe programs are synthesized via a CEGIS pro-
cedure and can provide safety guarantees on the original
high-performing neural networks via invariant inference. A
detailed comparison was provided on page 3.
Controller Synthesis. Random search [30] has long been
utilized as an effective approach for controller synthesis.
In [29], several extensions of random search have been pro-
posed that substantially improve its performance when ap-
plied to reinforcement learning. However, [29] learns a single
linear controller that we found to be insufficient to guarantee
safety for our benchmarks in our experience. We often need
to learn a program that involves a family of linear controllers
conditioned on different input spaces to guarantee safety.
The novelty of our approach is that it can automatically
synthesize programs with conditional statements by need,
which is critical to ensure safety.

In Sec. 5, linear sketches were used in our experiments for
shield synthesis. LQR-Tree based approaches such as [44]
can synthesize a controller consisting of a set of linear qua-
dratic regulator (LQR [14]) controllers each applicable in a
different portion of the state space. These approaches focus
on stability while our approach primarily addresses safety.
In our experiments, we observed that because LQR does not
take safe/unsafe regions into consideration, synthesized LQR
controllers can regularly violate safety constraints.
Runtime Shielding. Shield synthesis has been used in run-
time enforcement for reactive systems [12, 25]. Safety shield-
ing in reinforcement learning was first introduced in [4].
Because their verification approach is not symbolic, however,
it can only work over finite discrete state and action systems.
Since states in infinite state and continuous action systems

are not enumerable, using these methods requires the end
user to provide a finite abstraction of complex environment
dynamics; such abstractions are typically too coarse to be
useful (because they result in too much over-approximation),
or otherwise have too many states to be analyzable [15]. In-
deed, automated environment abstraction tools such as [16]
often take hours even for simple 4-dimensional systems. Our
approach embraces the nature of infinity in control systems
by learning a symbolic shield from an inductive invariant for
a synthesized program that includes an infinite number of
environment states under which the program can be guaran-
teed to be safe. We therefore believe our framework provides
a more promising verification pathway for machine learning
in high-dimensional control systems. In general, these efforts
focused on shielding of discrete and finite systems with no
obvious generalization to effectively deal with continuous
and infinite systems that our approach can monitor and pro-
tect. Shielding in continuous control systems was introduced
in [3, 18]. These approaches are based on HJ reachability
(Hamilton-Jacobi Reachability [7]). However, current formu-
lations of HJ reachability are limited to systems with approx-
imately five dimensions, making high-dimensional system
verification intractable. Unlike their least restrictive control
law framework that decouples safety and learning, our ap-
proach only considers state spaces that a learned controller
attempts to explore and is therefore capable of synthesizing
safety shields even in high dimensions.

7 Conclusions
This paper presents an inductive synthesis-based toolchain
that can verify neural network control policies within an
environment formalized as an infinite-state transition sys-
tem. The key idea is a novel synthesis framework capable
of synthesizing a deterministic policy program based on
an user-given sketch that resembles a neural policy oracle
and simultaneously satisfies a safety specification using a
counterexample-guided synthesis loop. Verification sound-
ness is achieved at runtime by using the learned determin-
istic program along with its learned inductive invariant as
a shield to protect the neural policy, correcting the neural
policy’s action only if the chosen action can cause violation
of the inductive invariant. Experimental results demonstrate
that our approach can be used to realize fully trustworthy
reinforcement learning systems with low overhead.

Acknowledgments
We thank our shepherd Swarat Chaudhuri and the anony-
mous reviewers for their comments and suggestions. This
work was supported in part by C-BRIC, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) pro-
gram sponsored by DARPA.

An Inductive Synthesis Framework for Verifiable Reinforcement Learning PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] M. Ahmadi, C. Rowley, and U. Topcu. 2018. Control-Oriented Learning

of Lagrangian and Hamiltonian Systems. In American Control Confer-
ence.

[2] Anayo K. Akametalu, Shahab Kaynama, Jaime F. Fisac, Melanie Nicole
Zeilinger, Jeremy H. Gillula, and Claire J. Tomlin. 2014. Reachability-
based safe learning with Gaussian processes. In 53rd IEEE Conference
on Decision and Control, CDC 2014. 1424–1431.

[3] Anayo K. Akametalu, Shahab Kaynama, Jaime F. Fisac, Melanie Nicole
Zeilinger, Jeremy H. Gillula, and Claire J. Tomlin. 2014. Reachability-
based safe learning with Gaussian processes. In 53rd IEEE Conference
on Decision and Control, CDC 2014, Los Angeles, CA, USA, December
15-17, 2014. 1424–1431.

[4] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. 2018. Safe Reinforce-
ment Learning via Shielding. AAAI (2018).

[5] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
2015. Syntax-Guided Synthesis. In Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series, D: Information
and Communication Security, Vol. 40. IOS Press, 1–25.

[6] MOSEK ApS. 2018. The mosek optimization software. http://www.
mosek.com

[7] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2017.
Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances.
(2017).

[8] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya V. Nori, and Antonio Criminisi. 2016. Measuring Neural
Net Robustness with Constraints. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems (NIPS’16).
2621–2629.

[9] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable
Reinforcement Learning via Policy Extraction. CoRR abs/1805.08328
(2018).

[10] Richard N Bergman, Diane T Finegood, and Marilyn Ader. 1985. As-
sessment of insulin sensitivity in vivo. Endocrine reviews 6, 1 (1985),
45–86.

[11] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas
Krause. 2017. Safe Model-based Reinforcement Learning with Stability
Guarantees. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017. 908–
919.

[12] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao
Wang. 2015. Shield Synthesis: - Runtime Enforcement for Reactive
Systems. In Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015. 533–548.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). 337–340.

[14] Peter Dorato, Vito Cerone, and Chaouki Abdallah. 1994. Linear-
Quadratic Control: An Introduction. Simon & Schuster, Inc., New York,
NY, USA.

[15] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan.
2018. Controller Synthesis Made Real: Reach-Avoid Specifications and
Linear Dynamics. In Computer Aided Verification - 30th International
Conference, CAV 2018. 347–366.

[16] Ioannis Filippidis, Sumanth Dathathri, Scott C. Livingston, Necmiye
Ozay, and Richard M. Murray. 2016. Control design for hybrid sys-
tems with TuLiP: The Temporal Logic Planning toolbox. In 2016 IEEE
Conference on Control Applications, CCA 2016. 1030–1041.

[17] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. 2018. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract Interpretation. In
2018 IEEE Symposium on Security and Privacy, SP 2018. 3–18.

[18] Jeremy H. Gillula and Claire J. Tomlin. 2012. Guaranteed Safe Online
Learning via Reachability: tracking a ground target using a quadrotor.
In IEEE International Conference on Robotics and Automation, ICRA
2012, 14-18 May, 2012, St. Paul, Minnesota, USA. 2723–2730.

[19] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
2008. Program Analysis As Constraint Solving. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’08). 281–292.

[20] Sumit Gulwani and Ashish Tiwari. 2008. Constraint-based approach
for analysis of hybrid systems. In International Conference on Computer
Aided Verification. 190–203.

[21] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017.
Safety Verification of Deep Neural Networks. In CAV (1) (Lecture Notes
in Computer Science), Vol. 10426. 3–29.

[22] Dominic W Jordan and Peter Smith. 1987. Nonlinear ordinary differ-
ential equations. (1987).

[23] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks. In Computer Aided Verification - 29th Interna-
tional Conference, CAV 2017. 97–117.

[24] Hui Kong, Fei He, Xiaoyu Song, William N. N. Hung, and Ming Gu.
2013. Exponential-Condition-Based Barrier Certificate Generation
for Safety Verification of Hybrid Systems. In Proceedings of the 25th
International Conference on Computer Aided Verification (CAV’13). 242–
257.

[25] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura
Humphrey, Robert Könighofer, Ufuk Topcu, and Chao Wang. 2017.
Shield Synthesis. Form. Methods Syst. Des. 51, 2 (Nov. 2017), 332–361.

[26] Benoît Legat, Chris Coey, Robin Deits, Joey Huchette, and Amelia
Perry. 2017 (accessed Nov 16, 2018). Sum-of-squares optimization in
Julia. https://www.juliaopt.org/meetings/mit2017/legat.pdf

[27] Yuxi Li. 2017. Deep Reinforcement Learning: An Overview. CoRR
abs/1701.07274 (2017).

[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Contin-
uous control with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings.

[29] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random
search of static linear policies is competitive for reinforcement learning.
In Advances in Neural Information Processing Systems 31. 1800–1809.

[30] J Matyas. 1965. Random optimization. Automation and Remote Control
26, 2 (1965), 246–253.

[31] Matthew Mirman, Timon Gehr, and Martin T. Vechev. 2018. Differen-
tiable Abstract Interpretation for Provably Robust Neural Networks. In
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018. 3575–3583.

[32] Teodor Mihai Moldovan and Pieter Abbeel. 2012. Safe Exploration in
Markov Decision Processes. In Proceedings of the 29th International
Coference on International Conference on Machine Learning (ICML’12).
1451–1458.

[33] Yurii Nesterov and Vladimir Spokoiny. 2017. Random Gradient-Free
Minimization of Convex Functions. Found. Comput. Math. 17, 2 (2017),
527–566.

[34] Stephen Prajna and Ali Jadbabaie. 2004. Safety Verification of Hybrid
Systems Using Barrier Certificates. In Hybrid Systems: Computation
and Control, 7th International Workshop, HSCC 2004. 477–492.

[35] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M.
Kakade. 2017. Towards Generalization and Simplicity in Continu-
ous Control. In Advances in Neural Information Processing Systems

http://www. mosek. com
http://www. mosek. com
https://www.juliaopt.org/meetings/mit2017/legat.pdf

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan

30: Annual Conference on Neural Information Processing Systems 2017.
6553–6564.

[36] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Re-
duction of Imitation Learning and Structured Prediction to No-Regret
Online Learning. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2011. 627–635.

[37] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reacha-
bility Analysis of Deep Neural Networks with Provable Guarantees.
In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018. 2651–2659.

[38] Stefan Schaal. 1999. Is imitation learning the route to humanoid robots?
Trends in cognitive sciences 3, 6 (1999), 233–242.

[39] Bastian Schürmann and Matthias Althoff. 2017. Optimal control of
sets of solutions to formally guarantee constraints of disturbed linear
systems. In 2017 American Control Conference, ACC 2017. 2522–2529.

[40] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, DaanWierstra,
andMartin Riedmiller. 2014. Deterministic Policy Gradient Algorithms.
In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32. I–387–I–395.

[41] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.
Dissertation. Berkeley, CA, USA. Advisor(s) Bodik, Rastislav.

[42] Armando Solar-Lezama. 2009. The Sketching Approach to Program
Synthesis. In Proceedings of the 7th Asian Symposium on Programming
Languages and Systems (APLAS ’09). 4–13.

[43] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta
Kwiatkowska, and Daniel Kroening. 2018. Concolic Testing for Deep

Neural Networks. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018). 109–119.

[44] Russ Tedrake. 2009. LQR-trees: Feedback motion planning on sparse
randomized trees. In Robotics: Science and Systems V, University of
Washington, Seattle, USA, June 28 - July 1, 2009.

[45] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest:
Automated Testing of Deep-neural-network-driven Autonomous Cars.
In Proceedings of the 40th International Conference on Software Engi-
neering (ICSE ’18). 303–314.

[46] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. 2016. Safe
Exploration in Finite Markov Decision Processes with Gaussian Pro-
cesses. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (NIPS’16). 4312–4320.

[47] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet
Kohli, and Swarat Chaudhuri. 2018. Programmatically Interpretable
Reinforcement Learning. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018. 5052–5061.

[48] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018.
Feature-Guided Black-Box Safety Testing of Deep Neural Networks.
In Tools and Algorithms for the Construction and Analysis of Systems -
24th International Conference, TACAS 2018. 408–426.

[49] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. 2018.
An Inductive Synthesis Framework for Verifiable Reinforcement Learn-
ing. Technical Report. Galois, Inc. http://herowanzhu.github.io/
herowanzhu.github.io/VerifiableLearning.pdf

http://herowanzhu.github.io/herowanzhu.github.io/VerifiableLearning.pdf
http://herowanzhu.github.io/herowanzhu.github.io/VerifiableLearning.pdf

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 State Transition System
	2.2 Synthesis, Verification and Shielding

	3 Problem Setup
	4 Verification Procedure
	4.1 Synthesis
	4.2 Verification
	4.3 Shielding

	5 Experimental Results
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

