
Deductive Synthesis of Reinforcement Learning
Agents for Infinite Horizon Tasks⋆

Yuning Wang[0009−0000−4317−9758] and He Zhu[0000−0001−9606−150X]

Rutgers University, New Brunswick NJ, USA
{yw895,hz375}@cs.rutgers.edu

Abstract. We propose a deductive synthesis framework for construct-
ing reinforcement learning (RL) agents that provably satisfy temporal
reach-avoid specifications over infinite horizons. Our approach decom-
poses these temporal specifications into a sequence of finite-horizon sub-
tasks, for which we synthesize individual RL policies. Using formal veri-
fication techniques, we ensure that the composition of a finite number of
subtask policies guarantees satisfaction of the overall specification over
infinite horizons. Experimental results on a suite of benchmarks show
that our synthesized agents outperform standard RL methods in both
task performance and compliance with safety and temporal requirements.

Keywords: Controller Synthesis · Deductive Synthesis · Reinforcement
Learning · Temporal Property Verification

1 Introduction

Reinforcement learning (RL) has emerged as a powerful framework for au-
tonomous decision-making in dynamic environments [16,45,33]. Its ability to
learn complex behaviors through interaction with the environment makes it an
attractive choice for a wide range of applications. However, in many safety-
critical domains, it is not sufficient for RL agents to merely optimize rewards.
These systems must also adhere to strict safety and liveness constraints that
can often be described by temporal logic properties. One widely studied class
of such constraints is linear temporal logic (LTL) properties, which express rich
behaviors over infinite horizons, such as ensuring safety ("something bad never
happens") or liveness ("something good eventually happens") conditions.

Several existing approaches have investigated using fragments of LTL to de-
fine learning objectives for complex tasks, such as truncated LTL [32], logic for-
mulas combining sequences and Boolean operations over subtasks [26,27], and
reward machines [21,20]. These methods typically generate a reward function
based on a given specification, which an RL algorithm then utilizes to learn a
policy. Some deep RL approaches attempt to optimize a lower bound on the
probability of satisfying general LTL formulas [4,18,5,46,54,47]. However, a key
⋆ This work is supported by the National Science Foundation under grants CCF-

2007799 and CCF-2124155.

2 Yuning Wang and He Zhu

challenge with these approaches lies in how rewards are assigned: since success
or failure is determined at the trajectory level for temporal logic properties, it
is difficult to attribute rewards to specific actions. This exacerbates the credit
assignment problem, making it harder for RL algorithms to learn effectively.
More importantly, they do not provide formal guarantees for the satisfaction of
the specified objectives.

In the domain of formal verification for RL controllers, existing work focuses
on ensuring that a controller, when composed with system dynamics and an
environment model, remains safe or reaches target regions within a finite task
horizon. However, approaches [51,13,11,22,49] based on reachability analysis
become intractable for long task horizons due to the need for highly precise
abstractions to mitigate approximation errors in reachable state set computa-
tions, making them scalable only for short-horizon tasks. Alternative methods
reduce the infinite-horizon verification problem to single-step verification by in-
ferring the inductive invariant of a closed-loop system, in the form of Lyapunov
functions [9,50] or control barrier functions [1,39]. While effective for simple
reach-avoid problems, they are not easily generalized to temporal tasks—such
as those involving repeating subroutines that must traverse a sequence of sub-
goals infinitely.

Fig. 1: A shuttle mountain car
task where the car is tasked to
repeatedly travel back and forth
between two positions.

We propose a deductive synthesis frame-
work, VEL-∞ (VErification-based Learning
for Infinite Horizon Tasks), that synthesizes
RL agents with formal guarantees of satisfy-
ing temporal reach-avoid specifications over
infinite horizons (formalized in Sec. 2). Given
a temporal reach-avoid property Ψ expressed
in our specification language, VEL-∞ de-
composes the global task into a sequence
of finite-horizon subtasks, each characterized
by well-defined preconditions and postcondi-
tions. These subtask controllers are indepen-
dently learned and formally verified, and their
composition is provably correct with respect
to satisfying Ψ over an infinite execution. As an example, consider a shuttle
mountain car problem, where the task is to repeatedly drive the car between
Position A and Position B. VEL-∞ breaks this task into subtasks: moving from
Position A to Position B (red arrow) and then back (blue arrow). Each subtask
is defined by a precondition (e.g., starting at Position A with some velocity con-
straints) and a postcondition (e.g., reaching Position B with some other velocity
constraints). Notably, the postcondition of one subtask serves as the precondi-
tion of the other, creating a cyclic dependency between the two. VEL-∞ verifies
each subtask with its pre- and postconditions, ensuring that when subtasks are
composed, they are always invoked in states that satisfy their preconditions—an
invariant that guarantees the task can be executed indefinitely.

The key contributions of our work are as follows:

Synthesis of RL Agents for Infinite Horizon Properties 3

– Deductive Synthesis for RL: We introduce a framework that integrates de-
ductive reasoning with reinforcement learning to synthesize control policies
satisfying temporal reach-avoid properties over infinite horizons.

– Modular Sub-task Decomposition: Our method decomposes infinite-horizon
specifications into sub-tasks, enabling efficient learning using off-the-shelf RL
algorithms, and then composes the solutions to ensure global correctness.

– Experimental Validation: We demonstrate the effectiveness of our approach
through experiments on a suite of benchmark tasks with continuous state
and action space, showing that it outperforms existing RL-based methods
in both performance and adherence to formal task specifications.

2 Problem Setup

Environment Model. We model the environment of an RL agent as a discrete-
time dynamical system given by the tupleM [·] = (S,A, F,R, S0, ·). Here, S ⊆ Rn
is the state space, A ⊆ Rm is the action space. The system’s dynamics are defined
by the equation

st+1 ∼ F (st, at) = f(st, at, wt) wt ∈W

where t ∈ N0 is a time step, st ∈ S is a state of the system, at ∈ A is a control
action, and ωt is a random time-varying disturbance vector from the disturbance
space W ⊆ Rp at time step t. R : S × A → R is a reward function and R(s, a)
defines the immediate reward after the transition from an environment state
s ∈ S with action a ∈ A. S0 is the set of initial states. We explicitly model
the deployment of a control policy π in M [·] as a closed-loop system M [π]. The
system dynamics of M [π] are defined by the dynamics function F : S × A → S
and the control policy π : S → A, which maps states to actions, i.e., at = π(st).

Given an initial state s0, we denote ζ ∼M [π](s0) as a trajectory (or rollout)
of M [π] sampled from s0, i.e. ζ = s0

a0−→ s1
a1−→ s2 · · · where each at = π(st),

each st+1 ∼ F (st, at). We use ζ ∼M [π] for any trajectory of M [π] sampled from
an initial state s0 ∈ S0.
Key Assumptions. We assume that the dynamics f and policy π are Lipschitz
continuous functions. The dynamics function f is known and is composed of
standard trigonometric and polynomial terms, combined with arithmetic oper-
ations. Furthermore, we assume a bounded disturbance set W , i.e. the system’s
uncertainty is bounded within a specific range. For example, the disturbance
vector ωt is drawn from a triangular noise distribution at each time step t.

Example 1. Consider the 9Rooms environment in Fig. 2a. The agent (green dot)
starts in the bottom left room (1, 1) and is governed by the dynamics function,
st+1 = st + 0.1min

(
max(at,−1), 1

)
+ ωt, where ωt is drawn from a triangular

noise distribution. The state space of the environment is defined as [0, 3]×[0, 3] ⊂
R2. The set of initial states is [0.4, 0.6]×[0.4, 0.6]. The state space contains unsafe
areas that should be avoided, i.e., the red wall segments.

4 Yuning Wang and He Zhu

(a) 9Rooms environment

Ψex =

(Room1,2;
repeat(

Room3,2; Room3,3;
Room2,3; Room2,2

)) ensure OutsideWall

(b) Example task specification Ψex

Fig. 2: A 9Rooms environment with specification Ψex and a satisfying trajectory.

Temporal Reach-Avoid Specifications. We define a high-level specifica-
tion language that concisely expresses desired RL agent behaviors for infinite-
horizon reach-avoid tasks. Inspired by recent specification languages for RL
tasks [21,20,26,27], our language restricts classic LTL properties to enable re-
ward shaping for efficient learning. The syntax of our specification language
extends the Spectrl language [26].

Definition 1 (Predicate). A predicate φ is a quantifier-free Boolean combi-
nation of linear inequalities over the environment state variables x:

φ ::= P | φ ∧ φ | φ ∨ φ
P ::= A · x ≤ b where A ∈ R|x|, b ∈ R

A state s ∈ S satisfies a predicate φ, denoted as s |= φ, iff φ(s) is true.

Definition 2 (Task Specification). A task specification Ψ is either a non-
repetitive task specification ψ or a repetitive task specification ψR.

Ψ ::= ψ | ψR
The syntax of ψ and ψR defined as:

ψ ::= achieve φ

| ψ ensure φ

| ψ1; ψ2

| ψ1 or ψ2

ψR ::= repeat ψ
| ψR ensure φ

| ψ; ψR1

| ψR1 or ψR2

Intuitively, a specification Ψ in our language is defined over trajectories with a
finite prefix ψ and a possibly infinite suffix ψR. An infinite trajectory ζ satisfies
ψ if there exists a finite prefix of ζ that satisfies ψ. In the definition for ψ, the
first clause means that the prefix trajectory should eventually reach a state that
satisfies the predicate φ. The second clause says that the prefix trajectory should
satisfy specification ψ while always staying in states that satisfy a safety con-
straint φ. The third clause states that the prefix trajectory should sequentially
satisfy ψ1 followed by ψ2. The fourth clause means that the prefix trajectory

Synthesis of RL Agents for Infinite Horizon Properties 5

should satisfy either ψ1 or ψ2. An infinite trajectory ζ satisfies a repetitive task
ψR if, beyond some time step i, the suffix of the trajectory ζi:∞ conforms to a
temporal property repeat ψ, indicating a repeated execution of the task ψ to
achieve its goal states infinitely often.

Example 2. The task specification Ψex (Fig. 2b) for the 9Rooms environment
requires the agent to first reach room (1, 2) and then repeatedly traverse four
rooms in a circular way infinitely, while avoiding collision with any red wall seg-
ments. Roomx,y is the abbreviation for achieve Center(x,y) where the predicate
Center(x,y) is true for states where the agent locates at the center of the room
indexed by (x,y). The OutsideWall predicate is true for states where the agent
stays away from any wall segments. The green curve in Fig.2a shows an agent
trajectory that satisfies Ψex.

We formalize the semantics of task specification satisfaction in Ψ as follows.

Definition 3 (Task Specification Satisfaction). Given an infinite trajectory
ζ = s0

a0−→ s1
a1−→ s2 · · · , ζ satisfies a non-repetitive task specification ψ, denoted

as ζ |= ψ if and only if there exists a time step i such that the finite prefix
trajectory ζ0:i satisfies ψ. The satisfaction of ψ by ζ0:i, namely ζ0:i |= ψ, is
defined inductively as follows:

ζ0:i |= achieve φ ⇔ ∃ 0 ≤ j ≤ i s.t. sj |= φ

ζ0:i |= ψ ensure φ ⇔ ζ0:i |= ψ and ∀ 0 ≤ j < i, sj |= φ

ζ0:i |= ψ1; ψ2 ⇔ ∃ 0 ≤ j < i s.t. ζ0:j |= ψ1 and ζj+1:i |= ψ2

ζ0:i |= ψ1 or ψ2 ⇔ ζ0:i |= ψ1 or ζ0:i |= ψ2

(1)

The satisfaction of a repetitive task specification ψR by an infinite trajectory
ζ, denoted as ζ |= ψR, is defined inductively as follows:

ζ |= repeat ψ ⇔ ∃ i s.t. ζ0:i |= ψ and ζi+1:∞ |= repeat ψ
ζ |= ψR ensure φ ⇔ ζ |= ψR and ∀i, si |= φ

ζ |= ψ; ψR ⇔ ∃ i s.t. ζ0:i |= ψ and ζi+1:∞ |= ψR

ζ |= ψR1 or ψR2 ⇔ ζ |= ψR1 or ζ |= ψR2

(2)

Finally, ζ satisfies Ψ , denoted as ζ |= Ψ , if and only if ζ satisfies the under-
lying ψ or ψR.

Comparison with LTL. Compared to declarative LTL properties, our lan-
guage Ψ is operationally direct, task-oriented, and tailored for RL agents. No-
tably, our language encodes a restricted fragment of LTL properties, disallowing
temporal dependencies that combine temporal operators and Boolean connec-
tives arbitrarily. The exact fragment of LTL that our specification language ψR
supports is characterized as follows, where φ is a quantifier-free predicate over
state variables:

ψ ::= φ | F(φ ∧Xψ) ∧Gφ | ψ ∨ ψ
ψR ::= ψ | ψ ∧Gψ

(3)

6 Yuning Wang and He Zhu

This fragment focuses on task execution order. It captures task sequencing as
F(φ1 ∧XFφ2), where the agent must first reach a state satisfying φ1 and then
proceed to a state satisfying φ2. It also enforces safety constraints through
F(φ1∧XFφ2)∧Gφ3, ensuring that the agent adheres to the safety condition φ3

at all times. Additionally, it supports infinite repetition with GF(φ1 ∧XFφ2),
requiring the agent to repeatedly visit states satisfying φ1 and φ2 indefinitely.
Our specification language employs the achieve, ensure, and repeat operators
to naturally capture eventual satisfaction, safety constraints, and global invari-
ance, making it well-suited for expressing this fragment. Our language does not
adopt classical LTL syntax in order to improve accessibility for RL practitioners
who may not have a formal methods background. Instead, it uses an intuitive
structure that aligns with common RL problem formulations, allowing users to
specify infinite sequences of subtasks compositionally. This restricted fragment,
as demonstrated below, enables an efficient verification procedure.

Relation to Spectrl. Our specification language is based on the Spectrl
language [26]. VEL-∞ is part of the recent research trend in RL for LTL, lever-
aging RL techniques to optimize LTL objectives directly in continuous state and
action spaces. Existing work Spectrl [26] and DiRL [27] in this direction has
developed efficient algorithms for handling temporal reach-avoid specifications
defined over a finite number of subtasks. However, there remains a significant
gap in developing a general RL algorithm capable of handling infinite-horizon
LTL specifications, such as those requiring infinite oscillation between key sub-
goals. Formally, the Spectrl and DiRL approaches support ψ (finite reach-
avoid tasks) but do not generalize to ψR, which encompasses temporal reach-
avoid objectives over infinite horizons. VEL-∞ fills this gap by introducing a
novel framework that extends RL capabilities to the setting in ψR, and provide
formal correctness guarantees for this extension using formal methods.

Problem Formulation. Given an environment model M [·] and a specification
Ψ , our goal is to find a control policy π such that for all ζ ∼M [π], ζ |= Ψ .

3 Verification-Based Learning over Infinite Horizons

Main Framework. Our approach, Verification-Based Learning for Infinite
horizon properties (VEL-∞), leverages the compositional property of a task
specification Ψ in our language to construct an abstract reachability graph for
the task. We use a graph search algorithm similar to the Dijkstra’s algorithm to
train formally verified policies for edge subtasks within the abstract reachability
graph and construct a final policy that satisfies the overall task specification by
strategically combining edge policies.

3.1 Abstract Reachability Graph Construction

Our approach builds on [27] to convert a task specification Ψ into an abstract
reachability graph GΨ , but unlike [27], we do not require GΨ to be acyclic.

Synthesis of RL Agents for Infinite Horizon Properties 7

(a) Gψ for ψ = achieve φ (b) GψR for ψR = repeat ψ

Fig. 3: Visualization of abstract reachability graph construction

We define GΨ = (VΨ , EΨ , VFΨ , µΨ , βΨ , v0Ψ) where each vertex v ∈ VΨ repre-
sents a region in the state space captured by some predicate φv (Definition 1).
The predicate labeling function µΨ (v) maps each vertex v ∈ VΨ to its corre-
sponding predicate φv. The initial vertex v0Ψ ∈ VΨ encodes the initial state
region S0 of the environment model. The set VFΨ includes all final vertices that
may induce cycles (introduced by the repeat operator) defining recurring pat-
terns in infinite trajectories. Each edge e = (u → v) ∈ EΨ corresponds to a
goal-directed subtask with precondition µΨ (u) and postcondition µΨ (v):

Te : µΨ (u)⇝ µΨ (v) | βΨ (e)

that transitions the agent from subregion µΨ (u) to subregion µΨ (v). The safety
constraint labeling function βΨ (e) maps each edge e to a predicate φe (enforced
by the ensure operator) that must hold true on all states during the subtask
represented by e. Intuitively, a trajectory that satisfies the specification Ψ should
transition through a sequence of subgoal regions in VΨ , starting from the initial
vertex and possibly cycling at some final vertex in VFΨ , while adhering to the
safety constraints associated with the edges in EΨ along the path.

We provide a high-level description of the algorithm used to construct the
abstract reachability graph GΨ for a task specification Ψ . For more details, we
refer interested readers to the extended version [58]. The abstract reachability
graph Gψ for a specification in the form of ψ = achieve φ is shown in Fig. 3a.
It consists of two vertices: the initial vertex v0 with a predicate φv0 encoding the
initial state space S0 and the final vertex vf with the predicate φ. The directed
edge (v0 → vf) represents the subtask S0 ⇝ φ of transitioning from the initial
region S0 to the target region defined by φ. The graph for ψ = ψ1 ensure φ
can be obtained by updating the safety constraint β(e) of each edge e within
Gψ1

(recursively constructed) through a conjunction β(e) ∧ φ. The graph for
ψ = ψ1; ψ2 is constructed by adding edges in the form of (vfi → vj), where
vfi is any final vertex of Gψ1 and vj is any neighbor vertex of the initial vertex
v0ψ2

in Gψ2 . Then v0ψ2
and all its edges are removed. This construction ensures

that the subtask for ψ2 begins after that of ψ1 completes. The graph for Gψ for
ψ = ψ1 or ψ2 is derived by merging the initial vertices v0ψ1

and v0ψ2
into a

single initial vertex, allowing the agent to choose which task to complete.
For a repetitive task specification ψR = repeat ψ, the graph GψR is obtained

by adding edges that connect all the final vertices of Gψ to the neighbors of the

8 Yuning Wang and He Zhu

(a) Abstract reachability graph for Gψex (b) Subregions for Each Vertex

Fig. 4: The abstract reachability graph for specification Ψex in Fig. 2

initial vertex v0, allowing the task ψ to be repeated. We then set these neighbors
as the final vertices of GψR , marking the start and end of a cycle. The added
edges are shown in blue in Fig. 3b. The graphs for other types of repetitive task
specifications can be recursively constructed similarly to their counterparts in
ψ.

Example 3. Consider the task specification Ψex for 9Rooms in Fig. 2b, its ab-
stract reachability graph GΨex is shown in Fig. 4a. Subregions represented by
the predicates are marked in Fig. 4b. The safety constraint for each edge (no
collision with red walls) is not shown.

After construction, the abstract reachability graph GΨ serves as a structured
representation of the task specification Ψ . With subtasks encoded in the edges in
GΨ , the completion of the full specification can be viewed as visiting vertices in
GΨ in a specific order. Definition 4 shows how to validate if an agent trajectory
accomplishes the task Ψ using the abstract reachability graph GΨ .

Definition 4 (Abstract Reachability Graph Satisfaction). Given an in-
finite trajectory ζ = s0

a0−→ s1
a1−→ s2 · · · , ζ satisfies the abstract reachability

graph Gψ of a non-repetitive task specification ψ, denoted as ζ |= Gψ, if and
only if there exists a finite sequence of indices i0 ≤ i1 ≤ · · · ≤ in and a path
ρ = v0 → v1 → · · · → vn in Gψ such that:

– vn ∈ VFψ
– ∀ 0 ≤ j ≤ n, sij |= µψ(vj)
– ∀ 0 ≤ j < n, ζij :ij+1 |= βψ(vj → vj+1)

Given the abstract reachability graph GψR of a repetitive specification ψR, ζ
satisfies GψR , denoted as ζ |= GψR , if and only if there exists an infinite sequence
of indices i0 ≤ i1 ≤ · · · ≤ in · · · and an infinite path ρ = v0 → v1 → · · · → vn · · ·
in GψR such that:

– vn ∈ VFψR occurs infinite number of times in ρ
– ∀ j ≥ 0, sij |= µψR(vj)
– ∀ j ≥ 0, ζij :ij+1

|= βψR(vj → vj+1)

Synthesis of RL Agents for Infinite Horizon Properties 9

Theorem 1. Given a task specification Ψ and its abstract reachability graph
GΨ , for any infinite trajectory ζ, we have ζ |= Ψ if and only if ζ |= GΨ .

Proof. The theorem follows from a straightforward induction on Ψ .

Hereafter, we often omit the suffix Ψ for simplicity, such as referring to GΨ
as G when the context is clear.

3.2 Dijkstra-Style Abstract Reachability Graph Search

After converting a task specification Ψ into an abstract reachability graph G,
where subtasks are modeled as directed edges, a practical learning strategy [27]
exploits this graph structure by decomposing the learning problem into goal-
reaching subtasks. Individual edge policies are trained for the subtasks associ-
ated with the edges and subsequently composed to form a solution for the full
specification Ψ1. Since the edges of G represent smaller, localized subtasks, this
approach avoids the complexity of satisfying the entire specification with a single
RL algorithm. However, applying this decomposition strategy to infinite-horizon
temporal reach-avoid problems is challenging, as it requires ensuring that the
composition of finite subtasks can be executed over infinite horizons. VEL-∞
proceeds in the following three steps to tackle this challenge:

– Step 1: For each edge e = u→ v in G, learn an edge policy πe that aims to
transition the system from any state s ∈ µ(u) to some state s′ ∈ µ(v), while
avoiding states that violate the safety constraint β(e).

– Step 2: Formally verify that πe can transition the system from µ(u) to µ(v)
within ce timesteps (where ce is a parameter learned during training) while
ensuring compliance with β(e).

– Step 3: Use a graph search algorithm in conjunction with the edge costs ce
to compute a path ρ = v0 → v1 → · · · → (vk → vk+1 → · · · → vk+l)

ω with a
cyclic structure labeled with ω where vk = vk+l and vk ∈ VF is a final vertex
in G. The path ρ minimizes c(ρ) = ⟨

∑k+l−1
j=k cej ,

∑k−1
j=0 cej ⟩ by lexicographic

ordering, where ej = vj → vj+1 corresponds to an edge policy πj = πej .

Our key idea is to establish a formally verified inductive invariant ensuring that,
for any searched graph path ρ containing a cyclic structure (vk → vk+1 → · · · →
vk+l)

ω at step three, the set of states reachable at the end of the cycle on vk+l
is a subset of the states in µ(vk+l). Since vk+l = vk, we have shown that the
set of states reachable at the end of the cycle is contained within the states at
the beginning of the cycle, µ(vk). This inductive property guarantees the infinite
execution of the cycle along ρ.

Finally, we construct the overall controller as a stateful path policy:

Definition 5 (Path Policy). Given the edge policies along with a path ρ =
v0 → v1 → · · · → (vk → vk+1 → · · · → vk+l)

ω where vk = vk+l and vk ∈ VF
in G, we define the overall controller as a path policy πρ = π0 ◦ · · · ◦ πk−1 ◦
1 This is feasible because we assume access to a simulator with known dynamics.

10 Yuning Wang and He Zhu

(πk ◦ . . . ◦ πk+l−1)
ω designed to achieve the sequence of edges in ρ. It navigates

from µ(v0) to µ(vk), and then infinitely visits µ(vk) through the cycle from vk. It
executes each policy πj until it reaches µ(vj+1), and then switch to πj+1 unless
j = k + l − 1 in which case j is reset to k. Note that πρ is stateful since it
internally keeps track of the index j of the current policy.

We explain controller verification and the graph search algorithm in detail
below. Specifically, VEL-∞ decomposes the verification of a path policy to the
verification of its edge policies. VEL-∞ verifies an edge policy πe against an
environment model M [·] and a specification Te using abstract interpretation.

Definition 6 (Symbolic Rollouts for Edge Policies). Given an environ-
ment model M [·], an edge policy πe, a subtask specification Te : µ(u) ⇝ µ(v) |
β(e), an abstract domain D with abstraction function α and concretization func-
tion γ, an abstract transformer FD for the state transition function F of M ,
and abstract transformer πD

e for the policy, a symbolic rollout of M [πe] over D
constructs an H-step sequence of symbolic states ζD = SD

0 , S
D
1 , . . . , S

D
H where

SD
0 = α({s | s |= µ(u)}), the abstraction of the initial subtask states. The sym-

bolic state SD
t+1 that overapproximates the set of reachable states from the initial

subtask states at time step t+ 1 is computed as:

SD
t+1 = FD(SD

t , A
D
t)

where AD
t = πD

e (S
D
t) is an overapproximation of the set of possible actions at t.

Edge Policy Verification. Our edge policy verification procedure leverages the
concretization operator γ of the abstract domain D. The concretization γ(SD

t)
is defined as the set of concrete states represented by the abstract state SD

t . To
balance precision and verification efficiency, we assume that this concretization
can be approximated using a tight interval γI(SD

t), which represents the most
precise interval enclosing all concrete states of SD

t . The edge policy πe satisfies
the subtask specification Te : µ(u) ⇝ µ(v) | β(e), denoted as πe |= Te, if the
following conditions hold on the symbolic rollout ofM [πe], ζD = SD

0 , S
D
1 , . . . , S

D
H .

First, every reachable state satisfies the safety constraint β(e):

∀0 ≤ t < H, ∀s ∈ γI(S
D
t), s |= β(e)

Second, the reachable states at the final step H satisfy the subtask’s goal con-
dition,

∀s ∈ γI(S
D
H), s |= µ(v)

Path Policy Verification. A path policy πρ is formally verified πρ |= G if and
only if each edge policy πe on ρ is formally verified i.e. πe |= Te.

Example 4. Fig. 5 illustrates the symbolic rollouts of the edge policies within a
verified path policy for the 9Room environment. The abstract domain D used
for edge policy verification is Taylor Model (TM) flowpipes, which we discuss
further in Sec. 3.3. Each box represents the interval concretization of a symbolic
state, with colors distinguishing different edge policies.

Synthesis of RL Agents for Infinite Horizon Properties 11

Theorem 2 (Path Policy Verification Soundness). Given an environment
model M [·], an abstract reachability graph G, a path policy πρ = π0 ◦ · · · ◦ πk−1 ◦
(πk ◦ . . . ◦πk+l−1)

ω along with a path ρ = v0 → v1 → · · · → (vk → vk+1 → · · · →
vk+l)

ω in G where vk = vk+l and vk ∈ VF is a final vertex, if πρ |= G, then for
any ζ ∼M [πρ], ζ |= G.

Proof. For any infinite trajectory ζ = s0
a0−→ s1

a1−→ s2 · · · ∼ M [πρ], by con-
struction according to Definition 5, there exists an infinite sequence of indices
i0 ≤ · · · ≤ ik ≤ · · · ik+l ≤ · · · ≤ ik+2l ≤ · · · , such that for all 0 ≤ j < k,
ζij :ij+1 ∼ M [πj](sij) is produced by a policy πj on the prefix of πρ, and for all
j ≥ k, ζij :ij+1 ∼ M [πj mod l](sij) is produced by a policy πj mod l on the cyclic
structure of πρ. According to Definition 6, the verification procedure guarantees
that for all 0 ≤ j < k, we have sij |= µ(vj) and ζij :ij+1

|= β(vj → vj+1). Similarly,
for all j ≥ k, we have sij |= µ(vj mod l) and ζij :ij+1

|= β(vj mod l → vj mod l+1).
As such, ζ visits states in µ(vk) at ik, ik+l, ik+2l, . . ., etc, which means that ζ
visits vk infinitely often. Based on Definition 4, we have ζ |= G by construction.

Fig. 5: A symbolic rollout for the
9Rooms environment.

Theorems 1 and 2 jointly demonstrate
that, given an environment model M [·] and
a specification Ψ , any trajectory ζ ∼ M [πρ]
generated by a formally verified path policy
πρ satisfies ζ |= Ψ .
Invariants at Final Vertices. The proof of
Theorem 2 explains why VEL-∞ effectively
handles infinite-horizon properties. It ensures
that when the path policy πρ completes a cy-
cle traversal at timestep k + l, the reached
states remain within µ(vk+l). Since vk = vk+l, this means the states at the end
of the cycle on vk+l belong to the set of states µ(vk) at the cycle’s starting point
at timestep k, where vk is a final vertex. For example, at the center of Room3,2 in
Fig. 5, the last symbolic state for the edge policy in dark blue is fully enclosed
within the initial yellow symbolic state, indicating cyclic behaviors.
Edge Cost and Path Cost. We measure the cost ce of each edge e within
an abstract reachability graph G as the horizon H of the symbolic rollout con-
structed to verify the subtask Te of e (Definition 6). The cost cρ of a path
ρ = v0 → v1 → · · · → (vk → vk+1 → · · · → vk+l)

ω where vk = vk+l and vk ∈ VF
is a tuple ⟨

∑k+l−1
j=k cej ,

∑k−1
j=0 cej ⟩ where ej = vj → vj+1 corresponds to an edge

on ρ. The first element measures the sum of the edge costs within the cyclic
structure of ρ, and the second measures the sum of the edge costs on the prefix
that leads to the cycle. VEL-∞ compares path costs using lexicographic ordering,
meaning that we prefer the final vertex that has the least cost cycle back to itself
for infinite visits. This is reasonable because, as the cycle is traversed infinitely,
its cost dominates the cost of the prefix. VEL-∞ aims to learn the optimal path
policy corresponding to the path in G with the least path cost.
Main Search Algorithm. The outline of our learning algorithm VEL-∞ is
shown in Algorithm 1, which takes as input an environment model M [·] and an

12 Yuning Wang and He Zhu

Algorithm 1 VEL-∞ Policy Search Algorithm
1: procedure VEL-∞ (M [·], G = (V,E, VF , µ, β, v0))
2: for each vf ∈ VF do
3: ⟨cωvf , c

v0
vf ⟩, πvf ← Learn(M [·], G, v0, vf)

4: return πvf with the least cost ⟨cωvf , c
v0
vf ⟩ by lexicographic ordering

5:
6: procedure Learn (M [·], G, v0, vf , Rec = True)
7: Initialize priority queue Q with {(0, v0)}
8: Initialize visited set S ← ∅
9: while Q ̸= ∅ do

10: cu, u← Dequeue the vertex with the least cost in Q
11: if u /∈ S then
12: for each outgoing edge e = (u, v) ∈ G.E of u do
13: ▷ Learn an edge policy πe |= Te with TrainVerify (Algorithm 2)
14: πe, H, S

D
H ← TrainVerify (M [·], Te : µ(u)⇝ µ(v) | β(e))

15: ce ← H
16: ▷ Strengthen µ(v) by the (verified) set of states reachable at v
17: if v ̸∈ S then µ(v) ← µ(v) ∧ γI(SD

H)
18: if v = vf∧ Rec ∧ vf has outgoing edges then
19: ▷ Find the least-cost cycle from vf
20: ⟨_, cω⟩, πω ← Learn(M [·], G, vf , vf , Rec = False)
21: πvf ← Path policy from v0 to vf followed by πω
22: return ⟨cω, cu + ce⟩, πvf
23: else if v = vf then
24: πvf ← Path policy from v0 to vf
25: return ⟨0, cu + ce⟩, πvf
26: else
27: Enqueue (cu + ce, v) into Q
28: S ← S ∪ {u}

abstract reachability graph G that encodes a task specification Ψ . The algorithm
is built on top of the Dijkstra’s algorithm to traverse the reachability graph G.
For each final vertex vf ∈ VF , the algorithm invokes the Learn procedure at
line 3 to learn edge policies that can be used to reach vf .

In Learn, a priority queue Q is maintained to store pairs (c, v), where c
represents the path cost along the shortest path from the initial vertex v0 to
vertex v. Q is initialized to {(0, v0)} at line 7. Iteratively at line 9, Learn
handles an unprocessed vertex u closest to the initial vertex v0 from Q. For each
edge e = u → v in G, we learn an edge policy πe for the subtask Te : µ(u) ⇝
µ(v) | β(e) that transitions the system from any state s ∈ µ(u) to s′ ∈ µ(v)
safely with respect to the safety constraint β(e). We invoke the TrainVerify
algorithm (given in Sec. 3.3) at line 14 to synthesize a formally verified policy
πe for the subtask: πe |= Te. TrainVerify also returns H as the horizon of the
symbolic rollout constructed to verify the subtask Te of e (Definition 6). We use
H as the edge cost ce of e (line 15). Importantly, TrainVerify also returns the

Synthesis of RL Agents for Infinite Horizon Properties 13

symbolic state SD
H verified at timestep H and, at line 17, we strengthen µ(v), the

set of reachable states represented by v, as the set of concrete states in γI(SD
H),

which provides a tighter bound on the initial states for the subtasks represented
by the outgoing edges from v. If v is the final vertex vf and v has outgoing edges
that induce a cycle (via the repeat operator), we launch a separate round of
Dijkstra’s algorithm to find the least-cost cycle back to vf within the strongly
connected component of G that includes vf at line 20. We construct the path
policy that satisfies the full task specification at line 21 by first reaching vf using
policies along the shortest path from v0 to vf and then combining policies along
the shortest cycle back to vf . The algorithm returns the policy and its cost in
line 22. Similarly, for non-repetitive specifications, when v is the final vertex, we
simply return the path policy from v0 to vf (line 25).

3.3 Provably Correct Edge Policy Synthesis

We introduce the TrainVerify procedure to train an edge policy πe that is
formally verified with respect to the subtask specification Te : µ(u)⇝ µ(v) | β(e)
for an abstract reachability graph edge e : u → v, where µ(u) and µ(v) define
the initial and target state space regions and β(e) represents a safety constraint.
TrainVerify is outlined in Algorithm 2.

We first employ an arbitrary deep RL algorithm to train a neural network
policy, πNN, for task Te using a reward function derived from the specification of
Te. Intuitively, trajectories that satisfy the given specification will receive higher
rewards than those that do not, steering the policy toward behaviors that effec-
tively fulfill the task requirements. The following definition introduces a stan-
dard approach to quantitatively evaluate the predicates defined in Definition 1,
allowing for a continuous predicate evaluation:

Definition 7 (State Correctness Loss Function). For a predicate φ (Defi-
nition 1) over states s ∈ S, we define a non-negative loss function L(s, φ) such
that L(s, φ) = 0 iff s satisfies φ, i.e. s |= φ. We define L(s, φ) recursively, based
on the possible shapes of φ:

– L(s,A · x ≤ b) := max(A · s− b, 0)

– L(s, φ1 ∧ φ2) := max(L(s, φ1),L(s, φ2))

– L(s, φ1 ∨ φ2) := min(L(s, φ1),L(s, φ2))

Notice that L(s, φ1 ∧ φ2) = 0 iff L(s, φ1) = 0 and L(s, φ2) = 0, and similarly
L(φ1 ∨ φ2) = 0 iff L(φ1) = 0 or L(φ2) = 0.

The non-negative loss function L(s, φ) quantifies how much the state s vio-
lates the predicate φ. A larger loss indicates that the state is farther from the
region defined by the predicate in the state space. The reward function for Te is
defined as:

R(s, a) = c1 · L(s, µ(v)) + c2 · L(s, β(e))

14 Yuning Wang and He Zhu

for any state s ∈ S and action a ∈ A. Here, c1 and c2 are negative constants.
We train πNN to maximize the discounted cumulative reward2:

πNN = argmax
π

Es0|=µ(u),s0,a0,s1,...∼M [s0,π]

[
T∑
t=0

κtR(st, at)

]
(4)

where κ ∈ [0, 1] is the discount factor. Once training converges, the horizon H
for the subtask Te, which ensures a safe rollout from any state in µ(u) to a state
in µ(v), can be estimated based on evaluation episodes using the policy πNN.

(a) πNN trajectories (b) πθ trajectories

Fig. 6: Policy behavior in 9Rooms.
πθ is a verified distillation of πNN.

Principally, we can verifyM [πNN] against
the specification Te with rollout length
H using Definition 6. However, reachabil-
ity analysis for closed-loop systems con-
trolled by neural networks remains a ma-
jor challenge [25], and neural network poli-
cies trained merely from reward signals of-
ten fail to satisfy formal specifications. For
example, in Fig. 6a, in the 9Rooms envi-
ronment, a trained πNN agent for the edge
policy from Room2,2 to Room3,2 fails to complete the loop and instead collides
with the wall. To address this, following prior work [56,57], we distill πNN to
a time-varying linear policy that is as similar as possible to πNN. Importantly,
this process ensures that the time-varying linear policy can be formally verified
concerning the subtask Te. A time-varying linear policy can provide an accurate
local approximation of a neural controller at each timestep (if the timestep is
small) and incur a much-reduced verification cost owing to the linearity of the
representation. A time-varying policy πθ(s, t) with trainable parameters θ for a
time horizon H (0 ≤ t < H) can be expressed mathematically as

πθ(s, t) = θw(t)
T · s+ θb(t) (5)

where θw(t) and θb(t) are the time-varying gain matrix and bias. During exe-
cution within the time horizon H, the policy πθ(s, t) iteratively generates the
control input at timestep t when observing the current state s at t. The objective
of distilling πNN into a time-varying linear policy πθ is

θ∗ = argmin
θ

Es0,s1,··· ,sH∼M [πNN]||πθ(st, t)− πNN(st)||2

subject to Verify(πθ, Te) is true
(6)

where || · ||2 is L2 norm and the Verify procedure returns true if and only if πθ
satisfies the subtask specification Te according to Definition 6. In our implemen-
tation of the Verify procedure, per Definition 6, the abstract interpreter FD

2 By constraining the predicate µ(u) on each vertex u to a verified interval of reachable
states (line 17 in Algorithm 1), edge policy training for outgoing edges from u can
uniformly sample initial states s0 from this interval.

Synthesis of RL Agents for Infinite Horizon Properties 15

Algorithm 2 Train a verified edge policy πθ for an abstract reachability graph
edge e : u→ v such that πθ |= Te : µ(u)⇝ µ(v) | β(e).
1: procedure TrainVerify(M [·], Te : µ(u)⇝ µ(v) | β(e))
2: Train a neural network controller πNN for Te via Equation 4
3: Estimate the horizon H for task Te through sampling
4: Initialize a time-varying linear policy πθ over H timesteps via Equation 5
5: Learn a formally verified πθ for Te that approximates πNN via Equation 6
6: SD

0 , . . . , S
D
H ← ReachSet(πθ, µ(u), H) ▷ Definition 6

7: return πθ, H, SD
H

uses Taylor Model (TM) flowpipes as the abstract domain D. For reachability
analysis of M [πθ], at each timestep t (where t > 0), we get the TM flowpipe SD

t

for the reachable set of states of M [πθ] at timestep t− 1. To obtain a TM repre-
sentation for the output set of the time-varying linear policy πθ at timestep t, we
use TM arithmetic to evaluate a TM flowpipe AD

t for πθ(s, t) = θw(t)
T · s+ θb(t)

for all states s ∈ γ(SD
t). The resulting TM representation AD

t can be viewed as
an overapproximation of the policy’s output at timestep t. Finally, we construct
the TM flowpipe overapproximation SD

t+1 for all reachable states at timestep t
by reachability analysis over the state transition function FD(SD

t , A
D
t). We use

existing work [57] to solve the optimization task in Equation 6. Intuitively, this
method employs Lagrangian optimization to integrate the verification constraint
into the distillation objective, effectively minimizing both the L2 loss for distil-
lation and the violation of the verification constraint. The latter quantifies the
violation of the safety or reachability property in the worst case across all con-
crete states subsumed by a symbolic state SD

t . For completeness, we provide a
detailed explanation of this procedure based on [57] in the extended version [58].
For example, in Fig. 6b, the distilled policy πθ from πNN can be formally verified
to navigate the four rooms in an infinite circular sequence.

Corollary 1 (Algorithm 2 Soundness). Given an environment model M [·],
an edge policy specification Te : µ(u) ⇝ µ(v) | β(e), if TrainVerify returns
(πθ, H, SD

H), we have πθ |= Te. On the symbolic rollout ζD = SD
0 , S

D
1 , . . . , S

D
H of

M [πθ], we have ∀0 ≤ t < H∧s ∈ γI(S
D
t), s |= β(e), and ∀s ∈ γI(S

D
H), s |= µ(v).

4 Experiments

We provide an implementation of our framework, VEL-∞3, and evaluate it on
a set of challenging environments with continuous state and action spaces and
infinite-horizon specifications. For neural network policy learning, we use Soft
Actor-Critic (SAC) [16], a state-of-the-art deep RL algorithm. We implemented
the abstract interpreter for verifying time-varying linear policies on top of Flow∗

[7], which uses Taylor-Model flowpipes as the abstract domain.
3 VEL-∞ is available at https://github.com/RU-Automated-Reasoning-Group/
VEL-inf.

https://github.com/RU-Automated-Reasoning-Group/VEL-inf
https://github.com/RU-Automated-Reasoning-Group/VEL-inf

16 Yuning Wang and He Zhu

(a) 9Rooms (b) 16Rooms (c) MountainCar (d) FlatWorld (e) Tora (f) QuadRotor

Ψ1 = (Room1,2; repeat(Room3,2; Room3,3; Room2,3; Room2,2)) ensure OutsideWalls

Ψ2 = repeat(Room1,2; Room1, 4; Room3,4; Room3,2) ensure OutsideWalls or
(Room3,1; repeat(Room3,3; Room3,4; Room4,4; Room4,3)) ensure OutsideWalls

Ψ3 = repeat(achieve RightTop; achieve LeftTop)

Ψ4 = achieve Yellow; repeat(achieve Yellow ensure Yellow)

Ψ5 = repeat(achieve Yellow; achieve Red) ensure NotBlue

Ψ6 = achieve Origin; repeat (achieve Origin ensure Origin)

Ψ7 = achieve C; repeat (achieve C ensure C)

Ψ8 = repeat(achieve R; achieve L; achieve C)

Fig. 7: Environments and Task Specifications. The predicates Roomx,y and
OutsideWalls are defined in Example 2. LeftTop and RightTop represent states
at the left and right peaks of the mountain, respectively. The predicates Yellow,
Red, and NotBlue correspond to regions that are yellow, red, and any color other
than blue. Origin denotes the equilibrium state in the TORA environment. For
the QuadRotor benchmark, L, R, and C specify three designated positions.

Baselines. We compare VEL-∞ with five baselines: DiRL [27], LCER [54], Cy-
clER [46], TLTL [32], and BHNR [2]. Similar to our approach, DiRL uses the
abstract reachability graph to decompose the specification and train the edge
policies for each subtask. These edge policies are combined to address the full
specification. However, DiRL does not provide any formal guarantee regarding
the quality of generated controllers and it does not support infinite-horizon task
specifications. In our experiments, we unroll repetitive specifications using the
repeat operator five times for DiRL and reuse the edge policies as needed be-
yond this limit during evaluation. Another baseline, LCER, is a state-of-the-art
RL algorithm for LTL specifications. LCER uses eventual discounting [54] to
optimize a proxy value function that approximates the probability of satisfying
a specified LTL formula and uses counterfactual experience replay to improve
sample efficiency. We translate our specifications to LTL for LCER in our experi-
ments. CyclER is a novel reward shaping technique that exploits the underlying
structure of the LTL constraint to guide policy learning and combine it with
quantitative semantics (QS) [32] in LTL reward shaping. TLTL and BHNR also
use quantitative semantics for reward shaping and are computable for infinite-
horizon LTL tasks.
Benchmarks. We use benchmarks considered in related works, visualized in
Fig. 7. The 9Rooms environment and task specification Ψ1, adapted from [61],
were introduced in Example 2 and illustrated in Fig. 2. To explore more com-

Synthesis of RL Agents for Infinite Horizon Properties 17

Fig. 8: Cumulative rewards under eventual discounting [54] evaluated over 5
seeds. A reward of 1 is given for each visit to final vertices or accepting states.

plex specifications, we designed a 16Rooms environment, where task Ψ2 requires
the agent to traverse a circular path indefinitely via one of two possible routes,
represented by dashed arrows in Fig. 7b. The MountainCar environment, a clas-
sic nonlinear control problem from [35], follows task specification Ψ3, where the
agent must repeatedly drive back and forth in the valley. In the FlatWorld en-
vironment, adapted from [54], tasks Ψ4 and Ψ5 involve stabilizing in the yellow
region and oscillating between the yellow and red regions, respectively, while
avoiding the blue region. The TORA environment [23] simulates a cart connected
to a wall by a spring, with the task specification Ψ6 requiring stabilization around
the origin infinitely. The QuadRotor benchmark, adapted from [60], tasks a sim-
ulated 2D quadrotor with stabilizing at the equilibrium state [x, y, θ, ẋ, ẏ, θ̇] = 0
in Ψ7 and continuously navigating between three locations in a triangular pattern
in Ψ8. MountainCar, TORA and QuadRotor are nonlinear environments.
Results. Fig. 8 illustrates the learning performance throughout training for each
benchmark, comparing VEL-∞ and the baselines. The x-axis shows environment
steps, and the y-axis represents mean cumulative rewards under eventual dis-
counting [54] for the intermediate policies evaluated. The shaded region indicates
the standard deviation. VEL-∞ learned policies that are guaranteed correct for
all these tasks. Computing the exact satisfaction probability (for the baseline
models) over infinite horizons is an open problem. Eventually discounted return
provides a proxy to the likelihood of task satisfaction [54]. It counts visits to fi-
nal vertices in VEL-∞ and DiRL, and accepting states in the limit-deterministic
Büchi automata of LTL formulas in the other baselines, assigning a reward of

18 Yuning Wang and He Zhu

1 per visit, with future visits discounted by γ = 0.95. We remark that this dis-
counting schema is solely used for evaluation in VEL-∞. VEL-∞ demonstrates
the highest sample efficiency across all benchmarks, except for FlatWorld (Ψ4).
Notably, in Fig. 8, VEL-∞’s training curve remains flat until the final edge pol-
icy is trained, after which its performance rapidly surpasses all other approaches
to completely solve the tasks. DiRL is significantly less sample-efficient on our
benchmarks, requiring an order of magnitude more samples during training com-
pared to VEL-∞. Recall that repetitive specifications using the repeat operator
are unrolled in DiRL. It must repeatedly learn new policies for similar tasks,
whereas VEL-∞’s "train-and-verify" approach enables policy reuse with formal
guarantees. LCER’s low performance in our benchmarks may stem from its lim-
ited ability to utilize the structure of temporal logic properties during training.
This challenge is particularly evident in the 9Rooms and 16Rooms environments,
where the agent must accomplish several intermediate tasks before receiving any
reward. Methods that do not account for task structures may find it harder to
make steady progress in such settings. CyclER, TLTL, and BHNR show lim-
ited progress in our benchmarks, even though they utilize shaped rewards de-
rived from the quantitative semantics of the given LTL formulas. These methods
struggle with infinite-horizon tasks that involve multiple unordered subgoals, of-
ten leading to behaviors that optimize their respective QS-shaped LTL rewards
without ensuring task completion. In contrast, VEL-∞ successfully achieves task
satisfaction by explicitly decomposing temporal logic properties and synthesiz-
ing edge policies that guarantee correct composition for execution over infinite
horizons. The strong performance of VEL-∞ in these benchmarks highlights the
importance of synthesizing formally verified policies (with inductive invariants)
within our framework. In the extended version of the paper [58], we report the
average number of visits to final vertices (or accepting states) by trained policies
at convergence for each benchmark. These results highlight that, unlike VEL-∞,
the baselines lack formal correctness guarantees and often fail to produce policies
that ensure infinite execution required by temporal reach-avoid specifications.

Fig. 9: Quadrotor configuration
for the scalability case study.

Scalability Analysis. We conduct a case
study using QuadRotor to explore how
VEL-∞ scales with increasing task specifi-
cation complexity. We define specifications
that require varying numbers of edge poli-
cies based on the QuadRotor configura-
tions shown in Fig. 9. For a specifica-
tion involving x edges in the repeat cy-
cle, the quadrotor starts at state A, moves
counterclockwise for x − 1 hops, and re-
turns to A in the final edge. For exam-
ple, when x = 4, the task specification
is: repeat (achieve A;achieve B;achieve C;achieve D). The bottom-right
plot in Fig. 8 shows the training timesteps required for each specification for
x = 3, 4, 5, 6 resp. Our results show that the number of environment steps re-

Synthesis of RL Agents for Infinite Horizon Properties 19

quired for convergence by VEL-∞ increases linearly with the number of edge
policies in the abstract reachability graph for a given specification.

5 Related Work

Verification in RL. RL has shown great potential in automatically acquiring
new intelligent skills. However, verifying policies trained with RL algorithms to
ensure their correctness and other desired properties is crucial before deploy-
ment, especially in safety-critical domains [17,48]. Some prior works, such as
NNV, ReachNN*, and Verisig, have conducted reachability analysis to verify
neural network-controlled systems [11,51,13,22,49]. However, these approaches
verify the policies only after training is complete and do not use the verifica-
tion results to improve the policy. Other works interleave policy training and
verification by employing the idea of counterexample-guided abstraction and
refinement or by optimizing for worst-case specification violation loss [24,56].
Policies learned together with reach-avoid supermartingales provide probabilis-
tic guarantees of satisfying specifications [61,10]. In contrast, VEL-∞ supports
synthesizing formally verified policies for temporal reach-avoid tasks.
RL for Temporal Logic Specifications. Linear Temporal Logic (LTL) has
been widely adopted for specifying complex user behaviors [54]. A range of meth-
ods based on Q-learning have been developed to synthesize policies that sat-
isfy LTL specifications, particularly in environments with discrete action spaces
[4,47]. Other approaches aim to directly optimize the probability of satisfying
LTL formulas [18,5,46,54,6], typically by guiding the agent toward accepting
states in corresponding Büchi automata. To address the sparse reward issue
that often arises in this setting, some of these methods incorporate experience
replay to improve sample efficiency [54,55]. VEL-∞ takes a different approach
by using abstract reachability graphs (Section 3.1) instead of Büchi automata
for encoding specifications. Abstract reachability graphs provide a more struc-
tured and compositional representation at the subtask level, where each edge
corresponds to a meaningful subtask from a precondition (source node) to a
postcondition (target node). In contrast, Büchi automata operate at a lower
level. For example, consider the LTL formula F (φ1 ∧XFφ2), which implies two
sequential subtasks: first, reaching states that satisfy φ1, and then proceeding
to states that satisfy φ2. In a Büchi automaton, the system often remains in
the state corresponding to the satisfaction of φ1 while attempting to reach φ2,
without explicitly encoding the completion of the first subtask or the initiation
of the second. This makes it difficult to infer clear subtask boundaries and their
associated preconditions and postconditions. VEL-∞ overcomes this limitation
by organizing specifications through abstract reachability graphs, which natu-
rally align with subtask-based reasoning and support more tractable verification
and synthesis procedures. Truncated Linear Temporal Logic (TLTL) [32] and
Bounded Horizon Nominal Robustness (BHNR) [2] use the quantitative seman-
tics of temporal logic to define a reward function that encodes the intended agent
behavior, enabling RL algorithms to learn policies from it [32,2]. Such reward

20 Yuning Wang and He Zhu

functions can be challenging for RL algorithms to maximize in complex, long-
horizon task specifications. There exists work that instructs agents in multi-task
settings to follow instructions in the LTL task space [53,40]. These methods do
not provide formal guarantees for temporal property satisfaction.
Controller Synthesis for LTL objectives. Traditional controller synthesis al-
gorithms, particularly those grounded in formal methods and temporal logic, of-
ten rely on automata-based approaches [12,14,15,28,30,36,38,52,59]. These tech-
niques require abstraction and discretization [3,19,29,31,34,41,42,43,44], approxi-
mating continuous state and action spaces using finite-state models or grid-based
representations. Once a discrete abstraction is constructed, standard synthesis
algorithms for discrete systems can be applied. While such methods provide for-
mal correctness guarantees, they face significant scalability challenges in high-
dimensional or complex robotic systems due to issues like state explosion intro-
duced by discretization. There are other LTL fragments, such as GR(1) [37] and
GXW [8] that have been considered in the literature with favorable computa-
tional properties. Both GR(1) and GXW synthesis are formulated for discrete
state and action spaces, typically in reactive synthesis for controllers. When
applied to continuous systems, they require a finite abstraction step [59]. The
LTL fragment VEL-∞ supports (for infinite-horizon temporal reach-avoid objec-
tives) and GR(1)/GXW are incomparable. Based on RL, VEL-∞ is a controller
learning algorithm that operates directly in continuous environments, avoid-
ing the need for state discretization. This enables improved scalability in high-
dimensional settings. Although RL methods generally lack formal guarantees
of correctness, VEL-∞ addresses this limitation by incorporating verification
mechanisms to formally certify the correctness of learned controllers.

6 Conclusion

We introduced VEL-∞, a deductive synthesis framework for RL agents that
guarantees satisfaction of temporal reach-avoid properties over infinite horizons.
VEL-∞ systematically decomposes these temporal objectives into finite subtasks
while ensuring they can be composed and executed reliably over infinite time.
Experimental results demonstrate that by combining the strengths of deductive
reasoning with RL, VEL-∞ outperforms existing RL-based methods in both
learning efficiency and adherence to formal specifications.
Limitations. VEL-∞ supports a limited fragment of LTL focused on temporal
reach-avoid properties (Sec. 2), which can be naturally translated into abstract
reachability graphs (Sec. 3.1) for efficient controller synthesis and verification.
Extending VEL-∞ to handle general infinite-horizon LTL specifications remains
an important direction for future work. Another main limitation of VEL-∞ is
its reliance on an explicit environment model and sure property satisfaction.
It requires a known model of the environment for reachability analysis, which
may not scale to complex dynamics. Future work should focus on relaxing these
assumptions by incorporating learned models and using probabilistic analysis to
evaluate edge policies and their composition.

Synthesis of RL Agents for Infinite Horizon Properties 21

References

1. Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A.,
Baruah, S.K., Fischmeister, S. (eds.) Proceedings of the 11th International Con-
ference on Embedded Software, EMSOFT 2011, part of the Seventh Embedded
Systems Week, ESWeek 2011, Taipei, Taiwan, October 9-14, 2011. pp. 273–278.
ACM (2011)

2. Balakrishnan, A., Deshmukh, J.V.: Structured reward shaping using signal tempo-
ral logic specifications. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 3481–3486 (2019)

3. Belta, C., Sadraddini, S.: Formal methods for control synthesis: An optimization
perspective. Annu. Rev. Control. Robotics Auton. Syst. 2, 115–140 (2019)

4. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from lin-
ear temporal logic specifications using model-free reinforcement learning. In: 2020
IEEE International Conference on Robotics and Automation, ICRA 2020, Paris,
France, May 31 - August 31, 2020. pp. 10349–10355. IEEE (2020)

5. Cai, M., Hasanbeig, M., Xiao, S., Abate, A., Kan, Z.: Modular deep reinforce-
ment learning for continuous motion planning with temporal logic. IEEE Robotics
Autom. Lett. 6(4), 7973–7980 (2021)

6. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Ltl and
beyond: Formal languages for reward function specification in reinforcement learn-
ing. In: Proceedings of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence (IJCAI-19). pp. 6065–6073. International Joint Conferences on
Artificial Intelligence Organization (2019)

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 258–263.
Springer (2013)

8. Cheng, C., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications. In:
Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 9779, pp. 95–117. Springer (2016)

9. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for
switched systems: a switched lyapunov function approach. IEEE Trans. Autom.
Control. 47(11), 1883–1887 (2002)

10. Delgrange, F., Avni, G., Lukina, A., Schilling, C., Nowé, A., Pérez, G.A.: Synthesis
of hierarchical controllers based on deep reinforcement learning policies. CoRR
abs/2402.13785 (2024)

11. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Ozay, N., Prabhakar,
P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18,
2019. pp. 157–168. ACM (2019)

12. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Autom. 45(2), 343–352 (2009)

13. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: Reachnn*: A tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
Automated Technology for Verification and Analysis - 18th International Sym-
posium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. Lecture
Notes in Computer Science, vol. 12302, pp. 537–542. Springer (2020)

22 Yuning Wang and He Zhu

14. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. CoRR abs/1010.4672 (2010)

15. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control. 52(5), 782–798 (2007)

16. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor (2018), https:
//arxiv.org/abs/1801.01290

17. Hasanbeig, M., Kroening, D., Abate, A.: Towards verifiable and safe model-free
reinforcement learning. vol. 2509. CEUR Workshop Proceedings (2020)

18. Hasanbeig, M., Kroening, D., Abate, A.: Deep reinforcement learning with tem-
poral logics. In: Bertrand, N., Jansen, N. (eds.) Formal Modeling and Analysis of
Timed Systems - 18th International Conference, FORMATS 2020, Vienna, Aus-
tria, September 1-3, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12288, pp. 1–22. Springer (2020)

19. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.: Lazy abstraction-based control
for safety specifications. In: 57th IEEE Conference on Decision and Control, CDC
2018, Miami, FL, USA, December 17-19, 2018. pp. 4902–4907. IEEE (2018)

20. Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward machines: Ex-
ploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research 73, 173–208 (jan 2022)

21. Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 2112–2121.
PMLR (2018)

22. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Ozay, N., Prab-
hakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. pp. 169–178. ACM (2019)

23. Jankovic, M., Fontaine, D., Kokotovic, P.V.: Tora example: Cascade- and passivity-
based control designs. IEEE Transactions on Control Systems Technology 4(3),
292–297 (May 1996)

24. Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: Trainify: A cegar-driven training
and verification framework for safe deep reinforcement learning. In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification. pp. 193–218. Springer International
Publishing, Cham (2022)

25. Johnson, T.T., Lopez, D.M., Benet, L., Forets, M., Guadalupe, S., Schilling, C.,
Ivanov, R., Carpenter, T.J., Weimer, J., Lee, I.: ARCH-COMP21 category report:
Artificial intelligence and neural network control systems (AINNCS) for continuous
and hybrid systems plants. In: Frehse, G., Althoff, M. (eds.) 8th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21),
Brussels, Belgium, July 9, 2021. EPiC Series in Computing, vol. 80, pp. 90–119.
EasyChair (2021)

26. Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language for
reinforcement learning tasks. Curran Associates Inc., Red Hook, NY, USA (2019)

27. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: Proceedings of the 35th International Con-
ference on Neural Information Processing Systems. NIPS ’21, Curran Associates
Inc., Red Hook, NY, USA (2024)

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

Synthesis of RL Agents for Infinite Horizon Properties 23

28. Jr., M.M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded controller
synthesis. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6174, pp. 566–569. Springer
(2010)

29. Kim, E.S., Arcak, M., Seshia, S.A.: Symbolic control design for monotone systems
with directed specifications. Autom. 83, 10–19 (2017)

30. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robotics 25(6), 1370–1381 (2009)

31. Kurtz, V., Lin, H.: Temporal logic motion planning with convex optimization via
graphs of convex sets. IEEE Trans. Robotics 39(5), 3791–3804 (2023)

32. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 3834–3839 (2017)

33. Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive ap-
proach to reinforcement learning (2018), https://arxiv.org/abs/1803.07055

34. Meyer, P., Dimarogonas, D.V.: Hierarchical decomposition of LTL synthesis prob-
lem for nonlinear control systems. IEEE Trans. Autom. Control. 64(11), 4676–4683
(2019)

35. Moore, A.W.: Efficient memory-based learning for robot control. Tech. rep., Uni-
versity of Cambridge (1990)

36. Mouelhi, S., Girard, A., Gößler, G.: Cosyma: a tool for controller synthesis using
multi-scale abstractions. In: Belta, C., Ivancic, F. (eds.) Proceedings of the 16th
international conference on Hybrid systems: computation and control, HSCC 2013,
April 8-11, 2013, Philadelphia, PA, USA. pp. 83–88. ACM (2013)

37. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Interpre-
tation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January
8-10, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3855, pp. 364–
380. Springer (2006)

38. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Autom. 44(10), 2508–2516 (2008)

39. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control,
7th International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2993, pp. 477–492.
Springer (2004)

40. Qiu, W., Mao, W., Zhu, H.: Instructing goal-conditioned reinforcement learning
agents with temporal logic objectives. In: Thirty-seventh Conference on Neural
Information Processing Systems (2023)

41. Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations for the synthe-
sis of symbolic controllers. IEEE Trans. Autom. Control. 62(4), 1781–1796 (2017)

42. Ren, W., Dimarogonas, D.V.: Logarithmic quantization based symbolic abstrac-
tions for nonlinear control systems. In: 17th European Control Conference, ECC
2019, Naples, Italy, June 25-28, 2019. pp. 1312–1317. IEEE (2019)

43. Ren, W., Jungers, R.M., Dimarogonas, D.V.: Zonotope-based symbolic controller
synthesis for linear temporal logic specifications. IEEE Trans. Autom. Control.
69(11), 7630–7645 (2024)

44. Rungger, M., Zamani, M.: SCOTS: A tool for the synthesis of symbolic controllers.
In: Abate, A., Fainekos, G. (eds.) Proceedings of the 19th International Conference

https://arxiv.org/abs/1803.07055

24 Yuning Wang and He Zhu

on Hybrid Systems: Computation and Control, HSCC 2016, Vienna, Austria, April
12-14, 2016. pp. 99–104. ACM (2016)

45. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), https://arxiv.org/abs/1707.06347

46. Shah, A., Voloshin, C., Yang, C., Verma, A., Chaudhuri, S., Seshia, S.A.: Ltl-
constrained policy optimization with cycle experience replay (2024), https://
arxiv.org/abs/2404.11578

47. Shao, D., Kwiatkowska, M.: Sample efficient model-free reinforcement learning
from LTL specifications with optimality guarantees. In: Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-
25th August 2023, Macao, SAR, China. pp. 4180–4189. ijcai.org (2023)

48. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be safe: Deep
rl with a safety critic (2020), https://arxiv.org/abs/2010.14603

49. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Ozay, N., Prabhakar, P. (eds.) Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control,
HSCC 2019, Montreal, QC, Canada, April 16-18, 2019. pp. 147–156. ACM (2019)

50. Tedrake, R., Manchester, I.R., Tobenkin, M.M., Roberts, J.W.: Lqr-trees: Feedback
motion planning via sums-of-squares verification. Int. J. Robotics Res. 29(8), 1038–
1052 (2010)

51. Tran, H., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak, S.,
Johnson, T.T.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 12224, pp. 3–17. Springer (2020)

52. Tumova, J., Yordanov, B., Belta, C., Cerna, I., Barnat, J.: A symbolic approach to
controlling piecewise affine systems. In: Proceedings of the 49th IEEE Conference
on Decision and Control, CDC 2010, December 15-17, 2010, Atlanta, Georgia,
USA. pp. 4230–4235. IEEE (2010)

53. Vaezipoor, P., Li, A.C., Icarte, R.T., McIlraith, S.A.: Ltl2action: Generalizing ltl
instructions for multi-task rl. In: Proceedings of the 38th International Conference
on Machine Learning (ICML). vol. 139, pp. 10497–10508. Proceedings of Machine
Learning Research (2021)

54. Voloshin, C., Verma, A., Yue, Y.: Eventual discounting temporal logic counter-
factual experience replay. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., Scarlett, J. (eds.) International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning
Research, vol. 202, pp. 35137–35150. PMLR (2023)

55. Wang, C., Li, Y., Smith, S.L., Liu, J.: Continuous motion planning with temporal
logic specifications using deep neural networks (2020), https://arxiv.org/abs/
2004.02610

56. Wang, Y., Zhu, H.: Verification-guided programmatic controller synthesis. In:
Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 229–250. Springer Nature Switzerland, Cham
(2023)

57. Wang, Y., Zhu, H.: Safe exploration in reinforcement learning by reachability anal-
ysis over learned models. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided
Verification. pp. 232–255. Springer Nature Switzerland, Cham (2024)

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2404.11578
https://arxiv.org/abs/2404.11578
https://arxiv.org/abs/2010.14603
https://arxiv.org/abs/2004.02610
https://arxiv.org/abs/2004.02610

Synthesis of RL Agents for Infinite Horizon Properties 25

58. Wang, Y., Zhu, H.: Deductive synthesis of reinforcement learning agents
for ω-regular properties (extended version) (2025), https://github.com/
RU-Automated-Reasoning-Group/VEL-inf/blob/main/VEL-inf_extended.pdf

59. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Caccamo, M., Frazzoli,
E., Grosu, R. (eds.) Proceedings of the 14th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, April
12-14, 2011. pp. 313–314. ACM (2011)

60. Yang, L., Dai, H., Shi, Z., Hsieh, C.J., Tedrake, R., Zhang, H.: Lyapunov-stable
neural control for state and output feedback: a novel formulation. In: Proceedings
of the 41st International Conference on Machine Learning. ICML’24, JMLR.org
(2024)

61. Žikelić, Ð., Lechner, M., Verma, A., Chatterjee, K., Henzinger, T.A.: Compositional
policy learning in stochastic control systems with formal guarantees. In: Thirty-
seventh Conference on Neural Information Processing Systems (2023)

https://github.com/RU-Automated-Reasoning-Group/VEL-inf/blob/main/VEL-inf_extended.pdf
https://github.com/RU-Automated-Reasoning-Group/VEL-inf/blob/main/VEL-inf_extended.pdf

	Deductive Synthesis of Reinforcement Learning Agents for Infinite Horizon Tasks

