He Zhu’s Research Statement

Overview. My research is driven by the belief that principles from programming languages (PL) and formal methods (FM)
can help overcome key challenges in building reliable, learning-enabled systems. For decades, these principles have enabled
developers to reason about, verify, and refine software through high-level abstractions and symbolic analysis. I aim to bring
the same level of structure and trust to machine learning (ML). Achieving this requires a systematic integration of symbolic
reasoning with statistical learning. My work focuses on forging this connection with the goal of building learning systems
that are not only powerful but also interpretable and verifiable.

My current efforts are situated within the emerging field of neurosymbolic programming (NSP) (Chaudhuri et al., 2021),
which bridges deep learning and program synthesis. At its core, NSP reframes learning as a synthesis task: the goal is
to discover a program—expressed in a domain-specific language (DSL)—that optimizes a quantitative objective while
satisfying additional semantic constraints (e.g. formal correctness guarantees). What draws me to this area is its unique
ability to combine the rigor of FM with the flexibility of modern ML. I see NSP as a promising foundation for building
trustworthy and efficient models. Its symbolic representations enable greater interpretability and verifiability than deep neural
networks. Using programming abstractions, NSP also facilitates more data-efficient learning and robust generalization.

Motivation. Despite its promise, NSP presents significant challenges. First,

NSP relies on DSLs to encode prior knowledge in symbolic form. Designing

appropriate DSLs requires expert insight—deciding what symbolic elements

(i.e. “symbols”) to include and how to structure them is application-specific w
and often not easily scalable. In many settings, the semantics of neural |
components may themselves be learned as it is often unclear what exactly

the neural modules should learn, or how their behavior should compose

with the “symbols”. Second, NSP combines training neural components and

searching over discrete program structures, resulting in a vast combinatorial

search space that is difficult to navigate. Lastly, while learning-enabled

systems are increasingly used in safety-critical domains, formally guaranteeing the correctness of NSP systems is difficult,
as it requires reasoning about discrete symbolic programs, the continuous behavior of neural modules, and the hierarchical
composition of subprograms and learned modules. For example, consider the robotic tasks illustrated in Fig. 1. In the
towering scenario, the robot must stack multiple cubes scattered on a table into a tower. Useful “symbols” might include
state abstraction predicates such as whether a cube is currently grasped by the robot’s gripper or whether it has been placed
in its designated goal region (indicated by colored spheres), and abstract actions that involve high-level subgoals such
as “grasp a cube” or “place a cube at the its goal region”. These abstract actions must ultimately be grounded by neural
controllers that operate in the low-level, continuous state space of the robot. Designing such symbolic abstractions a priori
within a DSL demands significant human effort and domain expertise, limiting the scalability and generalizability of NSP.
Even with well-crafted symbolic definitions, the program synthesis problem remains challenging due to the vast search
space. For towering, based on the symbolic abstraction given above, the system must synthesize loop programs to generalize
to an arbitrary number of cubes, with the loop conditional specifying the correct sequence in which the cubes should be
stacked. These challenges are amplified in more complex tasks. For example, in the packing scenario in Fig. 1, the robot
must identify and extract objects from an unstructured bin and then pack them tightly into a shipping box according to a
predefined spatial configuration. This task requires careful structuring of the symbolic representations over both geometric
constraints and object/action dependencies. These intertwined challenges—symbolic abstraction discovery, the division of
labor between symbolic and neural components, and the difficulty of formally reasoning about NSP systems that combine
discrete and continuous behaviors—highlight the need for principled approaches to guide the construction of NSP systems.

(a) Towering (b) Packing

Figure 1. Robotics Tasks.

My effort. In recent years, [ have explored NSP techniques for building autonomous agents—particularly robotic systems
that integrate learned control policies for decision making in high-dimensional, continuous, and uncertain environments,
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Figure 2. An overview of my work in the past 5 years.

such as those illustrated in Fig. 1. Safety, interpretability, and sample efficiency are essential for these systems. A promising
direction in this space is programmatic reinforcement learning (Verma et al., 2018; Inala et al., 2020; Patton et al., 2024),
where policies are expressed as domain-specific programs to improve transparency and reliability. However, existing
approaches face the fundamental challenges of NSP mentioned above—namely, (1) designing suitable DSLs to encode
domain knowledge in symbolic form, (2) navigating a combinatorially large program search space, and (3) ensuring the
reliability of neurosymbolic programs. My research, summarized in Fig. 2, addresses these issues through new algorithmic
techniques that make NSP more tractable and effective in the robotics domain. Specifically, I have developed (i) an
abstraction refinement framework that automatically discovers symbolic definitions for neuro-symbolic robot-control
programs (blue box in Fig. 2), addressing challenge (1); (ii) efficient neuro-symbolic synthesis algorithms that leverage
reward signals to guide the search and mitigate the exponential complexity of the program space (green box in Fig. 2),
addressing challenge (2); and (iii) verification techniques for neuro-symbolic programs, including deductive reasoning over
high-level symbolic abstractions and modular verification of low-level control policies against their symbolic specifications
in continuous state spaces (orange box in Fig. 2), addressing challenge (3).

Below, I outline a few core contributions that tackle these challenges head-on.

1. Neurosymbolic Robot-control Program Synthesis

My initial work on NSP for robot learning focuses on efficient synthesis algorithms given a well-designed neuro-symbolic
DSL. This DSL combines standard language constructs with a library of neural components, each representing a task-
agnostic skill that can be executed by a robot. Programs in this space are well-suited for complex, long-horizon robot-control
tasks due to their capabilities for logical deduction and generalization—areas where deep reinforcement learning often falls
short due to the lack of inductive biases in their learning representation.

1.1 Differentiable Synthesis. Unlike training deep neural nets, synthesizing programs requires optimizing over a combinato-
rial, non-differentiable, and rapidly exploded space of program structures. Even with strong heuristics, explicitly enumerating
program structures is not scalable—especially when programs include parameters, such as weights in programmatic models,
which must be learned separately for each candidate to fit the data. My research asks: can we jointly search discrete program
structures and program parameters using efficient optimization-based techniques?

Our method, m-PRL (Qiu & Zhu, 2022), views program derivation as drawing programs from a probabilistic distribution (Cui
& Zhu, 2021). Under this probabilistic view, we encode discrete program structure search as learning the probability
distribution of the context-free grammar rules within a DSL from data to induce high-accuracy programmatic models. To
this end, we express the program derivation process (i.e. iteratively applying grammar rules for program generation) as a
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differentiable program. That is, on each partial program expressible in the search space, the categorical choice between
applicable grammar rules to complete this program is relaxed into a softmax with trainable weights. The gradient updates
for these softmax weights as well as any program parameters are guided by training data. For robotics, 7-PRL (Qiu & Zhu,
2022) jointly learns control policy structures and parameters in a continuous relaxation of the program search space via an
RL algorithm. It is capable of composing task-agnostic robot skills into an interpretable composite program to solve novel
tasks. We have scaled this synthesis algorithm beyond robotics to learn functional programs with higher-order combinators
for behavior classification (Cui & Zhu, 2021), and logical programs for recommendation tasks (Chen et al., 2022a;b).

1.2 Reward-guided Synthesis. Robotic tasks typically involve a long horizon, extending over thousands of control steps,
and are characterized by sparse rewards, where reward signals are given only upon successful task completion or sporadically
for critical steps. For example, in the long-horizon task cleanhouse depicted in Fig. 3, the agent is only rewarded for
the percentage of wall-side trash bins picked up by the end of each episode. RL methods struggle with such long-horizon,
sparse-reward tasks due to the exponential growth in required robot-environment interactions as the number of steps to
discover rewards increases. Existing program synthesis approaches for RL, including 7-PRL (Sec 1.1), inherit this limitation
as they either adapt standard RL algorithms to guide program search or synthesize control programs by imitating RL
models. My research investigates: can we use the inductive biases in language constructs such as state-conditioned loops to
effectively compress the exploration space for long-horizon, multi-stage, and procedural robot-control tasks?

We developed ReGuS (Cui et al., 2024), a robot-control program synthesis algorithm
based on DSLs with user-defined state abstraction predicates and abstract actions.
State and action abstractions compactly represent environment dynamics and robot
capabilities. For cleanhouse, state abstraction defines predicates over spatial
relations between objects, such as frontIsClear () or present (n) where n
is an object of interest, to capture task-relevant context. Action abstraction encodes
low-level robot skills—either primitive or learned—that serve as modular building
blocks, like move (), turnLeft (), or pickUp (n). Together, these abstractions
enable generalizable, high-level decision-making policies.

def P (n:can):
while (—present(n)):
while (—present(n)):
if (leftIsClear()):
turnLeft()
while(leftIsClear()):
move()
if (—frontlsClear()):
turnRight()
move()
pickUp(n)

Figure 3. Robot control program syn-
The main idea of ReGuS in addressing the exploration challenge in RL is the use thesis for the cleanhouse bench-
of loops. In multi-object environments, encapsulating the learned procedure for ~ mark.
handling one object within a loop allows the agent to efficiently generalize this behavior across all similar objects,
resulting in more structured exploration. ReGuS supports hierarchical loop synthesis to efficiently reduce the search
space for loop-based programs. At the high level, ReGuS synthesizes a loop sketch that captures the skeletal structure
of a program with undetermined loop bodies. The low-level sketch completion phase then provides feedback, guid-
ing the high-level synthesizer. This feedback, given as the highest reward achieved by the low-level synthesizer to fill
out a loop sketch, helps prioritize the search path for the best quality loop sketch. For example, for cleanhouse,
ReGuS might discover a loop sketch: while (not present (can)) { ??¢; };77¢9; that can lead to a program
that picks up at least one trash can. The high-level synthesizer prioritizes sketches like this and may expand it as
while (not present (can)) {while (not present (can)) { ??¢y }; ??co}; ?7¢3; for deriving a program that
iteratively retrieves all trash cans, thus significantly expediting the environment exploration process. ReGuS also supports
on-demand synthesis of conditional statements and curriculum-guided procedure synthesis for continual learning. These
strategies make ReGuS far more data-efficient than existing learning and synthesis approaches to overcome the exponential
growth of the program search space. For example, ReGuS solves cleanhouse in 1.6M environment steps—orders of
magnitude fewer than the 20M required by a stochastic synthesizer (Carvalho et al., 2024), while LLM-based methods
e.g. (Liang et al., 2023) fail to scale due to the difficulty of generating the complex control flow as required in Fig. 3.

2. Symbol Discovery via Abstraction Refinement for Neurosymbolic Programs

A crucial bottleneck in existing synthesis techniques for RL and robotics systems, including ours 7-PRL and ReGuS
(described in Sec. 1), is the reliance on manually designed symbolic definitions of state abstraction predicates and abstract
actions in a DSL. High-quality abstractions often require significant human effort and domain knowledge to customize
effectively. My work explores ways to automatically generate such abstraction as part of the synthesis process.

2.1 Comparative Abstraction Refinement. Automatically learning state and action abstractions has been a key area in RL
and robotics. While prior work has explored learning relational abstractions from task demonstrations, existing approaches
either assume access to low-level controllers that are already available or predefined predicates—limiting their applicability.
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The simultaneous discovery of both remains an open challenge. My research asks: can we develop abstraction refinement
techniques to automatically infer suitable state and action abstractions from task demonstrations?.

We introduced RoboScribe (Cui et al., 2025), a synthesis engine based on Comparative Abstraction Refinement (Fig. 4).
RoboScribe identifies critical subgoals by contrasting successful demonstrations with failed executions of synthesized
programs. It learns state predicates that define such subgoals and abstract actions grounded as low-level policies that
transition between them, recovering the task’s hierarchical structure. RoboScribe starts with a coarse abstraction True ~
1R, assuming a single (neural) policy can transition any initial state to the goal condition ¢ which can be accessed via a
black-box reward. If no single policy can solve the task under this abstraction, RoboScribe refines it by learning predicates
for key intermediate states. For example, in pick&place (Fig. 4), the initial abstraction recognizes only goal states where
the block is placed at the red target zone (). However, a controller trained to directly satisfy ¢ r often fails to realize that
it has to grasp the block first as exemplified in Fig. 4. RoboScribe refines the abstraction by comparing states from failure
trajectories with those preceding success in demonstrations, learning a predicate ¢ that captures a key subgoal: the gripper
positioned above the block: True ~» ¢ ~» Y. By recursively refining abstractions in this way, RoboScribe decomposes
complex tasks into subtasks (e.g. True ~» @ and ¢ ~» ¥ g), enabling efficient learning of abstract states and actions.

In addition to symbol discovery for NSP,

RoboScribe serves as an efficient neu- ﬂﬂ( Environment Comparative Abstraction Iterutive—Progrh
rosymbolic synthesis algorithm in its own T Refinement - Learning

right. The key feature is the use of ; — % —_— Q —
on-the-fly learned state abstraction predi- :

cates to identify repeating subroutines from fesk Reward function postrect Envronment l
demonstrations, enabling synthesis of state- {9 oothenvie / T
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robot arm to stack blocks into a tower in
Fig. 1a. Predicates for subgoals like grasp-
ing and lifting a block recur across different
blocks throughout the demonstration. RoboScribe first constructs a loop program skeleton with its loop body as a sequence of
abstract actions to achieve the recurring subgoals, then fills in an object-ordering predicate as the loop guard to determine the
object processing order, and finally optimizes action abstractions (as low-level neural policies) to ensure robust generalization
across all loop iterations. In tasks like Towe r, the object-ordering predicate is critical. RoboScribe infers ordering predicates
from demonstrations to capture task intent—why certain objects are handled before others. Experimental results show that
RoboScribe generalizes to long-horizon, multi-object tasks, outperforming deep RL and programmatic RL baselines in
interpretability and efficiency—for example, programs for stacking towers transfer to pyramids without retraining.

Figure 4. Overview of the RoboScribe framework.

2.2 Learning from Exploration: Bootstrapping Demonstrations for Synthesis. A major limitation in RoboScribe is the
need for manual task demonstration provision (Fig. 4) for comparative abstraction refinement. My research explores: can
environment abstraction be fully automated by allowing an agent to explore and collect successful trajectories? When tasks
are challenging, exploration alone may only yield agents with low to medium success rates. However, by combining this
with comparative abstraction refinement, the agent can actively learn from its own experience—identifying key differences
between successful and failed trajectories to better reason about how to complete the task. Environment exploration remains
a key challenge in the RL literature, as it is often difficult to determine which actions ultimately lead to goal-satisfying
behavior. I proposed CE? (Duan et al., 2024a), “Cluster Edge Exploration”, a new goal-directed exploration algorithm. In
this context, a “goal” is a state in the robot environment. The key idea is clustering to group states that are easily reachable
from one another by the current policy under training in a latent space. By traversing to states on the boundary of these
clusters before doing exploratory behavior, CE? enables the agent to progressively broaden the coverage of each state
cluster to effectively explore a novel environment. Building upon CEZ?, we also developed MUN (Duan et al., 2024b) and
Cago (Duan et al., 2025) that further improve the agent’s exploration ability. Integrating these environment exploration
mechanisms with RoboScribe, as shown in Fig. 2, leads to a fully automatic robot-control program synthesis framework.

3. Neurosymbolic Program Verification

A central thrust of my research lies in integrating learning and verification to ensure that neurosymbolic programs satisfy
rigorous correctness specifications. My core algorithmic insight is to exploit the hierarchical structure of neurosymbolic
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programs to enable (i) deductive verification of high-level symbolic programs by abstracting neural components in abstract
state spaces, and (ii) modular verification of low-level neural components within the concrete state spaces. This separation
allows for efficient verification of the program’s logical structure without being hindered by the complexity of its neural
components. The neural components are then compositionally verified within their concrete domains.

3.1 High-level Deductive Verification. Neurosymbolic programs synthesized by ReGuS (Sec. 1) or RoboScribe (Sec. 2)
often incorporate unbounded loops to enable generalization across environments with varying numbers of objects. Since
these programs are learned from finite demonstrations, a key challenge is to formally verify that they can scale to arbitrary
object counts. My research asks: how do we analyze the interaction between high-level programs and low-level neural
components to ensure the logical correctness of the overall control strategy?

Our key idea is to perform high-level program verification entirely within ab- procedure STACK(b)

stract state and action spaces by leveraging the specifications of neural com- Requires: V. top(«)

ponents. These specifications—expressed as pre- and post-conditions—are Ensures: Vo. a{on*)bg

already inferred through RoboScribe’s comparative environment abstraction b <+ bo

refinement. For example, Fig. 5 depicts a synthesized program STACK by while 3V'. top(V') A # bdo
RoboScribe for the Tower task in Fig. la for stacking blocks on the table Inv: (Va. a{on*)by V top(a))
to a base block bg. The program iteratively extracts a block " such that no A blon*)by A top(b)
other block is above it (i.e., top(d’) is true), and &’ is not the top block b of (b, b) [on(V,b)]

the current partial stack. It then uses a neural control policy 7 to move b’ b« b

onto block b. The neural policy has a postcondition learned by RoboScribe

as on(b’, b). A loop invariant (Inv in Fig. 5) to verify the high-level program  Figure 5. Synthesized program by RoboScribe
ensures that each block either remains on the table or has already been for Tower (Fig. 1a).

placed in the current partial stack above by. In this example, the task specification and invariant are universally quantified
formulas over relations. They fit in the decidable Bernays-Schonfinkel fragment (we use additional axioms to constrain
the transitive closure on* over the on predicate). My work studies loop invariant inference from demonstrations and uses
SMT-based verification to discharge the resulting verification conditions.

3.2 Proof Space Optimization. Once high-level neurosymbolic programs are verified in the abstract space, we must ensure
that each neural component within satisfies its specification—expressed as pre- and post-conditions (e.g., those inferred
by RoboScribe). For example, we verify that the neural policy 7 (¥, b) in Fig. 5 can reliably stack b’ on b. My research
investigates: How do we verify control policies are downward executable in the low-level continuous state space?

Rather than adopting a post-hoc verification approach—where a model is trained without regard to its verifiability and
only checked afterward—I develop learning frameworks that incorporate verification directly into the training loop. Our
research studies how a learner can interact with a verifier during synthesis to guide the learning process toward solutions
that are not only effective but also provably correct with respect to formal constraints. We developed ART (Lin et al., 2020)
and VEL (Wang & Zhu, 2023), a verification-guided framework that integrates formal abstraction-based verification with
m-PRL (Sec. 1) to synthesize control policies for continuous-state robot environments. VEL iteratively refines a candidate
controller using verifier feedback, treating the controller and environment as a closed-loop system. A key challenge is
handling spurious counterexamples caused by overapproximations in reachability analysis (e.g., using Taylor models (Chen
et al., 2013)), which lead to error accumulation over time (the wrapping effect). VEL addresses this by lifting 7-PRL’s
synthesis from training examples to the abstraction space, enabling optimization against both real and spurious violations.

3.3 Safe Learning. A potential limitation of VEL is its reliance on a known environment model (which is often difficult to
obtain accurately). My research explores: In settings with unknown environment dynamics, how can we reduce safety risks
and irreversible damage caused by the robot during exploratory training?

We introduced VELM (Wang & Zhu, 2024), a model-based RL framework grounded in verification principles to ensure
safe exploration in unknown environments, enabling agents to learn while consistently satisfying safety constraints. The
main idea of VELM is to learn environment models as symbolic formulas and conduct formal reachability analysis over the
learned models for safety verification with probabilistic guarantees. Compared to neural models learned by existing work,
symbolic environment models are conducive to long-horizon reachability analysis, uniquely enabling efficient computation
of the reachable set for a control system. An online shielding layer is then constructed to confine the RL agent’s exploration
solely within a state space verified as safe in the learned model, thereby bolstering the overall safety profile of the RL system.
Across diverse RL environments, we showed that VELM significantly reduces safety violations compared to existing safe
learning techniques, all without compromising the RL agent’s reward performance.
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4. Other Works

In addition to neurosymbolic programming, I have pursued complementary directions that share a unifying goal: enabling
learning systems to reason with and be constrained by formal structures. These efforts explore how formal logic—particularly
Linear Temporal Logic (LTL)—can be used not only to specify complex objectives for reinforcement learning agents, but
also to guide exploration, generalization, and verification. They also extend to data-driven methods for formal verification,
aiming to make correctness guarantees more scalable and accessible by learning abstractions and invariants. Together, these
lines of work contribute to a broader vision of safe, verifiable, and generalizable programming systems.

4.1. Temporal Logic Learning and Verification

Temporal Logic Learning. LTL has been extensively studied as an alternative framework for specifying RL objectives,
but ensuring their satisfaction over infinite horizons is challenging—especially in high-dimensional, continuous systems
where sample efficiency is critical. I have developed two complementary approaches to LTL-constrained control policy
optimization. The first, GCRL-LTL (Qiu et al., 2023), shows that goal-conditioned RL agents, when properly guided,
can generalize zero-shot to arbitrary LTL specifications without additional training over the LTL task space. The second
work, TiLoIL (Fan & Zhu, 2025), introduces an imitation learning method for LTL objectives. The key idea is to leverages
Limit Deterministic Biichi Automata (LDBA) for LTL objectives and encourage agents to reach LDBA-accepting states
repeatedly and reliably. To achieve this, TiLoIL segments both expert demonstrations and agent trajectories based on visits
to LDBA-accepting states. It then trains the agent to imitate expert behavior within each segment, enabling it to reach these
accepting states from arbitrary positions. This segmentation strategy improves sample efficiency and helps agents satisfy
complex LTL specifications without requiring long and dense demonstrations.

Temporal Logic Verification. Existing verification efforts for RL controllers primarily focus on goal-reaching tasks,
leaving the verification of richer temporal logic specifications largely unaddressed. My work presents a deductive synthesis
framework, VEL-co (Wang & Zhu, 2025), that ensures RL policies satisfy temporal logic specifications over infinite
horizons. By decomposing temporal objectives into subtasks, our method efficiently synthesizes and verifies RL policies
for each subtask based on VEL (Wang & Zhu, 2023). Formal verification guarantees that the postcondition of one subtask
serves as the precondition for the next, enabling their cyclic composition. This invariant ensures that the synthesized policies
can execute indefinitely while maintaining correctness. Experiment results show that VEL-oco outperforms standard RL
methods for temporal logic objectives in both performance and adherence to safety and liveness constraints.

4.2. Data-Driven Formal Verification

Despite decades of investigation, software systems remain vulnerable to code defects. My research explored data-driven
techniques to enable scalable automated verification of software systems. My work has focused on (a) validating complex
data structures properties (Zhu et al., 2016), (b) discovering sound invariants of complex control-flow processes (i.e., loops
and recursion) (Zhu et al., 2018), and (c) reasoning over new computational models (i.e., machine learning models) with
complex non-linear behavior (Zhu et al., 2019). My main approach consists in discovering high-level abstract specifications
capturing the programmer’s intent (i.e., reachability specifications in the case of data structures (Zhu et al., 2015b; 2016);
inductive invariants in the case of loops and recursion (Zhu et al., 2015a; 2018); and, deterministic programs in the case
of machine learning models (Zhu et al., 2019; Lin et al., 2020)) to enable efficient verification that would be difficult or
impossible otherwise. The key technical insight is the application of data-driven techniques to a formal methods toolchain to
guide the automated discovery of high-level abstract specifications from code.

5. Grand Vision of Future Work

My future work will continue to unify ML with PL and FM through neurosymbolic synthesis for developing learning-
enabled systems that are both verifiable and interpretable. I envision a future where learning-enabled systems move beyond
end-to-end black-box learning toward the synthesis of structured, interpretable, and verifiable programs that retain the
adaptability of learning. In this paradigm, agents will autonomously acquire reusable, verifiable skills that can be composed
into complex behaviors through program synthesis, guided by formal specifications. Verification will become a continual
process—not an afterthought—interleaved with learning to ensure correctness and safety in open-ended environments. This
tight integration of synthesis and verification with learning will be key to building reliable, general-purpose autonomous
systems that can reason, adapt, and act safely in unstructured settings such as homes, factories, and disaster zones.
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Looking ahead, I see Large Language Models (LLMs) as semantic priors for abstraction learning and program synthesis of
interpretable learning-enabled systems. By leveraging their generative capabilities, LLMs can propose symbolic program
scaffolds grounded in high-level task descriptions or goal specifications. However, current methods often rely on fixed state
abstractions or hardcoded skill libraries for LLM programming, limiting its flexibility and generalization to novel tasks.
Integrating LLMs with RoboScribe within a hybrid architecture is a promising direction: LLM-generated structures—though
potentially noisy or incomplete—can initiate the synthesis process, which is then refined by learning low-level behaviors
and guided by verification-driven abstraction refinement to ensure safe and correct execution. My ongoing work (Mao et al.,
2025) provides preliminary evidence supporting the feasibility of this approach.

Another central thrust of my future research vision is to enable robot-control program synthesis directly from large-scale
offline datasets, reducing the reliance on costly robot-environment interaction. Leveraging large-scale offline data has
recently emerged as a powerful trend in robot learning, offering a promising alternative to expensive and risky real-world
exploration. Building on RoboScribe, a promising direction is to contrast high-performing and medium- or low-performing
trajectories within offline datasets to automatically discover useful abstractions that capture the essential structure of tasks.
In parallel, these datasets can be used to learn accurate world models that can be used as stand-ins for real environments
during neurosymbolic program synthesis. A key theoretical goal is to bound the performance gap between synthesis in
learned models and online interaction, providing principled assurances for deploying such systems. As systems transition
from offline to online learning, robots will gain the ability to interact with formal abstractions and incrementally refine their
understanding of both task structure and environment dynamics, leading to more adaptive and verifiable behaviors over time.
My ongoing work (Qiu et al., 2025) explores the viability of this idea.

I plan to extend my work on neurosymbolic robot programming to other NSP domains that require structured reasoning. For
example, in mathematical theorem proving, while most existing approaches learn a prover at the tactic level—mapping
proof states to individual tactics—I propose using comparative abstraction refinement to synthesize strategy-level proof
systems. In this setting, a strategy corresponds to a sequence of tactics, restructured as a lemma. A meta-synthesizer can
then learn to predict which strategies to invoke, composing new ones as needed during the proof search. This approach has
the potential to improve generalization, modularity, and interpretability in a wide range of automated reasoning systems.

I envision extending the core principles of specification-satisfying trajectory exploration and comparative abstraction
refinement to ordinary software systems. Modern software systems are increasingly complex and dynamic, making it
difficult to manually design abstractions or verify correctness at scale. By applying comparative abstraction refinement, we
could automatically discover critical structural patterns by contrasting successful and erroneous executions, uncovering
abstractions that guide both synthesis and verification. Such an approach would naturally enable compositional reasoning by
separately reasoning about components and assembling their guarantees. This line of work opens the door to a future in
which software systems can learn, adapt, and verify themselves.
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