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Deep reinforcement learning (RL) has led to encouraging successes in numerous challenging robotics applica-

tions. However, the lack of inductive biases to support logic deduction and generalization in the representation

of a deep RL model causes it less effective in exploring complex long-horizon robot-control tasks with sparse

reward signals. Existing program synthesis algorithms for RL problems inherit the same limitation, as they

either adapt conventional RL algorithms to guide program search or synthesize robot-control programs to imi-

tate an RL model. We propose ReGuS, a reward-guided synthesis paradigm, to unlock the potential of program

synthesis to overcome the exploration challenges. We develop a novel hierarchical synthesis algorithm with

decomposed search space for loops, on-demand synthesis of conditional statements, and curriculum synthesis

for procedure calls, to effectively compress the exploration space for long-horizon, multi-stage, and procedural

robot-control tasks that are difficult to address by conventional RL techniques. Experiment results demonstrate

that ReGuS significantly outperforms state-of-the-art RL algorithms and standard program synthesis baselines

on challenging robot tasks including autonomous driving, locomotion control, and object manipulation.
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1 INTRODUCTION
Inspired by the success of program synthesis in various applications, a growing body of research has

explored programmatic reinforcement learning [3, 25, 41, 44, 48–50, 54] that harnesses domain-specific

programs as the representation of reinforcement learning (RL) models for robot learning. These

methods either adapt existing deep RL algorithms to guide the search of robot-control programs or

synthesize a program to mimic a trained RL agent in a robot environment. Unfortunately, while

these methods have made significant strides in improving the interpretability of learned robot

controllers, they are limited by the capabilities of existing RL algorithms. Consequently, they are

unable to effectively handle tasks that prove challenging for conventional RL approaches.
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Fig. 1. A long-horizon,
sparse-reward robot task.

In what scenarios is deep reinforcement learning ineffective for
robot learning? Robotics tasks typically involve a long-horizon, extending
over thousands of control steps, and are characterized by sparse rewards,

where a reward indicating success or failure is given only at the end of task

execution. RL methods exhibit limited effectiveness when dealing with

long-horizon and sparse-reward tasks due to the exponential increase in

robot-environment interactions necessary for exploration, which grows

with the number of steps required to discover rewarding signals [29].

As a result, they struggle with long-horizon multi-stage tasks such as

putting an object into a drawer through the sequence of opening the drawer, placing the object,

and subsequently closing the drawer, where intrinsic logic deduction are essential. They also face

challenges when tackling long-horizon tasks that feature repetitive patterns, such as navigating

through multiple rooms with complex floor plans, as illustrated in Fig. 1 where an ant robot [47] is

tasked with locating a target object. In our experience, controllers learned using state-of-the-art RL

techniques tend to get trapped in the second room [22, 35, 36] or fail to generalize to similar floor

plans with more rooms [6, 32, 38, 40].

This paper.We present ReGuS - reward-guided synthesis - to unlock the potential of program syn-

thesis to overcome the inherent exploration challenges encountered by conventional RL techniques

(which also perplex existing programmatic RL methods) in handling long-horizon, multi-stage, and

procedural robot-control tasks with sparse reward signals. ReGuS aims to generate robot-control

programs that guide agents within a robotic environment to sequentially take control actions,

maximizing the expected reward received from the environment across all potential initial states.

The main idea behind ReGuS to address sparse-reward, long-horizon, multi-stage, and pro-

cedural robot-control tasks is to compress the agent exploration space by leveraging standard

language constructs such as state-conditioned loops, conditional statements, and procedure calls.

For example, in Fig. 1, after learning a procedure capable of traversing the first room, ReGuS can

encapsulate this procedure within a loop program to iteratively explore all the remaining rooms

based on this learned knowledge, leading to a systematic approach to environment exploration.

Fig. 2. The DoorKey Environment.

Key Assumption. To make program synthesis practical

for high-dimensional continuous robotics environments, Re-

GuS fires on a domain-specific language (DSL) incorporated

with user-defined state abstraction predicates [1, 14]. Such pred-

icates construct a higher-level representation of the robot’s

environment based on observed sensor data. This higher-level

representation can then be reasoned about using standard

language constructs, such as loops and conditionals, to trigger

suitable actions from a current state. For example, consider a simplified navigation environment

doorkey in Fig. 2. The robot has to pick up the key (marker) in the left room to unlock the door,

and then get into the right room to place the key on top of another key (marker). The DSL for

a navigation program can be designed to include perceptual functions such as leftIsClear(),
rightIsClear(), frontIsClear(), and present(marker) to enable the robot to detect obstacles

and locate desired objects. These perceptual functions form an effective state abstraction for decision

making e.g. turning left or right when the front is not clear.

ReGuS does not impose restrictions on the types of state abstractions. It operates with arbitrary

user-defined state abstraction, even in cases where it does not adhere to the Markov property. As

an example, our state abstraction for the doorkey environment is not Markov. An RL controller

depending solely on the abstracted states cannot accurately determine whether it should pick up

a marker or place a marker when a maker is present. This is because abstraction throws away
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information - the state abstraction should have included information about the room in which the

robot is located. However, defining such information in the abstraction is environment-specific and

not generalizable (e.g. to multiple rooms). Instead, ReGuS synthesizes a program that explicitly

divides the task into two sequential loops, with the first loop specifically for handling key pick-up

and the other for dropping the key at the right position, resulting in a program generalizable to

multiple rooms.

Robot-control DSL

(3) new skill

Sketch
Generator

Sketch
Completer

Reward function

(1) Loop Sketch

(2) Reward feedback

Robot Environment

Fig. 3. Overview of the reward-guided synthesis (Re-
GuS) framework for robotics tasks.

The ReGuS Framework. While pro-

grams with rich control-flow structures com-

press the exploration space for long-horizon

tasks in robot learning, the highly com-

binatorial program search space renders a

pure enumeration-based synthesis process in-

tractable. For example, there are an infinite

number of syntactic elaborations of the loop

body for each loop construct, which crucially

depends on the loop condition and could be

executed in an arbitrary number of iterations. Fig. 3 visualizes ReGuS’s solution to this challenge.

It tackles the exponential growth of program search space using a combination of three key ideas:

(1) Hierarchical Synthesis of Loop Sketches: ReGuS is a two-stage synthesis technique. At the
high level, a sketch generator synthesizes a loop sketch that only captures the “skeletal" loop

structures (sequential or nested) while leaving the loop bodies as “holes", yet to be determined.

Given a loop sketch, the low-level loop sketch completer synthesizes a complete program and

provides feedback to guide the sketch generator. The feedback is the highest reward among all the

programs searched in the sketch completion phase. The high-level sketch generator, implemented

as a variant of Monte Carlo Tree Search, uses the feedback to prioritize a search path toward

the best quality sketch for low-level sketch completion. While leveraging reward feedback for

program search tree expansion has already been explored in related works such as [2, 4], the

novelty of ReGuS is to direct high-level sketch generation by backpropagating rewards obtained

from low-level sketch completion. The prior works [2, 4] assume access to input-output examples

and thus can evaluate candidate programs based on the inputs and compare the output similarity

to generate rich reward information. However, in sparse-reward settings without input-output

examples (aka user demonstrations), if we were to apply the Monte Carlo reward estimation to

synthesize an entire program (including loops, conditionals, and agent actions) rather than just a

loop sketch, the likelihood of reaching a complete program with a nonzero averaged reward is low.

This reward feedback mechanism also differs ReGuS from existing two-stage program synthesis

techniques [19, 20, 51, 53] that only enumerate (example-consistent) sketches to be filled in without

learning from the sketch completion process.

(2) On-demand Synthesis of Conditional Statements: In the loop sketch completion phase,

our method guides top-down enumerative search by executing partially synthesized programs

to prioritize exploring partial programs with the highest reward performance (regularized by

their structure cost). During this evaluation, ReGuS lifts concrete states before and after an action

𝑐 into presumed precondition 𝜑 and postcondition 𝜓 by state abstraction. ReGuS uses inferred

preconditions and postconditions to synthesize conditional statements on an as-needed basis to

vastly reduce the program search space. If there is a disagreement between the inferred precondition

𝜑 and the current state 𝜎 before executing 𝑐 (i.e., 𝜎 does not satisfy 𝜑), ReGuS explores the option

of appending a conditional statement before 𝑐 with the branch condition evaluating to true for

𝜎 to handle the newly encountered state 𝜎 . ReGuS merges the two branches of this conditional

statement at a common point with consistent postconditions (Sec. 4.3).
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(3) Curriculum Synthesis of Procedural Calls: Synthesizing programs for robot control has the

additional benefit of enabling knowledge transfer across related tasks via reusable procedures. For

various tasks defined in similar environments, ReGuS ranks the tasks according to their complexity

e.g. the number of objects to manipulate, and adds programs synthesized to solve simpler tasks as

new skills via callable procedures so that they can be building blocks to constitute sophisticated

programs for more complex tasks. While curriculum synthesis can principally be incorporated into

existing programmatic RL approaches, these methods involve either adapting deep RL algorithms

to steer program search or synthesizing a program to imitate a trained RL agent. Consequently, the

integration must also extend to the deep RL algorithms, introducing additional complexity.

Evaluation. We evaluated ReGuS on several application domains including classic discrete

environments, highway autonomous driving, locomotion control of a quadruped ant robot to

explore goals in mazes of complex shapes, and object manipulation through a 7-DoF Fetch Mobile

Manipulator. All of our benchmarks are equipped with sparse rewards and involve inducing

programs with complex control structures to solve long-horizon tasks. The results demonstrate

that ReGuS significantly outperforms standard program synthesis baselines and state-of-the-art

reinforcement learning techniques.

Contributions. To summarize, this paper makes the following key contributions:

• We propose a reward-guided synthesis (ReGuS) technique for robot learning. ReGuS overcomes

the exploration challenges in long-horizon sparse-reward robot tasks by synthesizing programs

that incorporate state-conditioned loops, conditionals, and procedural calls. These program-

ming constructs act as strong inductive biases, enabling exploration space compression and the

generation of generalizable robot controllers for multi-stage and procedural tasks.

• We evaluate ReGuS on challenging robot tasks needing logical deduction and generalization and

show that it outperforms program synthesis and deep RL baselines by large margins.

2 OVERVIEW

Fig. 4. Partial Ob-
servability.

Why Reward-guided Synthesis? ReGuS uses reward functions over program
traces to define the intended program behavior. The synthesis problem is framed

as generating a program that maximizes the expected reward over all potential

initial states. Reward functions are black boxes to the synthesis algorithm.

ReGuS does not rely on examples or counterexamples from specifications.

The motivation behind this choice stems from the significant cost required to

obtain example robot behavior (demonstrations) from human experts in robotic

tasks [15, 26]. More importantly, synthesizing programs from demonstrated

robot behaviors can be infeasible when robots have only partial visibility into

the world. Consider a maze environment in Fig. 4 where the agent begins at

the bottom facing east. There are two target positions (markers). In each episode, one of the targets

is randomly selected as the agent’s goal to reach. Although it is feasible to collect demonstrations

by determining the shortest paths to the targets using an A
∗
planner, programming by example

would fail to identify a valid program based on these demonstrations. This is because, at the starting

position, due to the agent’s limited field of view, a synthesized program cannot condition the

invisible goal position to instruct the agent whether it should go forward or turn right.

Sparse Reward Functions. Synthesizing programs by rewards presents a significant challenge

in constructing informative reward functions. One may be tempted to use dense reward functions

as they offer frequent task-related information. For example, Fig. 5a presents a simplified household

environment CleanHouse for home-assisted robots where the goal is to navigate the house to pick

up trash cans (markers) placed adjacent to walls. The agent starts at the entry and must return
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(a) CleanHouse environment.

while (not present(marker)) {
while (not present(marker)) {

if (leftIsClear()) turnLeft();
if (not frontIsClear()) turnRight();
move();

} pickUp(marker);
}; pickUp(marker);

(b) CleanHouse controller.

Fig. 5. Fig. 5a depicts the CleanHouse environment where the agent starts at the entrance of the house.
Fig. 5b is a program that can pick up all trash cans and return them to the dumpster from all possible initial
states.

to one side of the entry where two dumpsters (green and blue) are located, with two markers in

this area. A dense reward function may be inversely proportional to the robot’s distance from the

dumpster location. However, using dense rewards can lead to a learning agent becoming trapped

in local minima [23]. For example, rewarding the robot to be close to the dumpster location may

inadvertently hinder its ability to collect trash cans at the far end of the house. ReGuS targets sparse

rewards that are given either after the robot completes the entire task or sporadically when it

achieves critical steps. In CleanHouse, by the end of a control episode, the agent receives a reward

based on the percentage of markers picked up and whether the dumpster location is reached.

2.1 Program and Domain-Specific Language
In this work, we focus on application domains for robot navigation and manipulation. We assume

that a robot takes an object-centric view as input (formally defined in Sec. 3) obtained by e.g. using

object detection [33, 34, 42] or discovery [13, 31] methods. These models return the detected objects

in the view and their associated attributes e.g. object class, positions, and velocities.

State Abstraction ℎ ::= Domain-dependent predicates

Control Action 𝑐 ::= Domain-dependent skills

Condition 𝑏 ::= ℎ | not ℎ
Statement 𝑆 ::= while (𝑏) {𝑆} | if (𝑏) 𝑆1 else 𝑆2 | 𝑆1; 𝑆2 | 𝑐

Fig. 6. Our DSL for robot-control program synthesis.

ReGuS synthesizes robot-

control programs based on a

generic DSL depicted in Fig. 6,

powered by user-defined state

abstraction predicates. Based

on the observation that a robot

typically needs to engage with

various environmental objects

in a navigation or manipula-

tion task, such as grasping objects and detecting nearby obstacles, our design principle is to specify

state abstraction predicates as perception functions aimed at describing spatial relationships and

physical orientations among environmental objects (including the robot itself). For example, in

a manipulation task of grasping a block on a table, a predicate for ascertaining whether the ro-

bot’s gripper is positioned above the block is important. For the CleanHouse task, we define state

abstraction predicates as:

frontIsClear() : ¬∃𝑜. front(𝑠𝑒𝑙 𝑓 , 𝑜) leftIsClear() : ¬∃𝑜. left(𝑠𝑒𝑙 𝑓 , 𝑜)
rightIsClear() : ¬∃𝑜. right(𝑠𝑒𝑙 𝑓 , 𝑜) present(o) : front(𝑠𝑒𝑙 𝑓 , 𝑜)

where 𝑠𝑒𝑙 𝑓 represents the robot itself and 𝑜 is an arbitrary object in the scene. State abstraction

predicates as such enable the robot to locate desired objects or obstacles to construct a higher-level

representation of its environment. This, in turn, facilitates the search for controllers capable of

updating the environment representations to achieve a desired goal state.
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In the DSL, a control action 𝑐 is an application of a low-level skill that refers to task-agnostic

capabilities of a robot. Skills add a layer of speed and steering control on top of the robot’s low-level

continuous state space, enabling robot navigation at a desired speed or object manipulation in

a specific orientation. These skills can be derived from either robot APIs (primitive actions) or

pre-trained RL controllers. Conceptually, skills are modular and reusable, and can be likened to

building blocks or subroutines that contribute to the overall control policy of the robot in diverse

contexts. For instance, in the context of the CleanHouse task, skills such as object manipulation

pickup(marker), navigation move(), turnLeft() and turnRight() facilitate picking up objects,

forward movement, and changing the orientation.

Our DSL allows for standard language constructs, such as state-conditioned loops and conditional

statements, which serve as powerful inductive biases to address the exploration challenges in

handling long-horizon and multi-stage robot tasks. A program that achieves the full reward for

CleanHouse is depicted in Fig. 5b. It uses the state abstraction predicates to extract state conditions

(e.g. present(marker)) and based on these state conditions invokes a sequence of control actions

for navigation (e.g. turnRight) and object manipulation (e.g. pickUp(marker)).

2.2 The Synthesis Procedure
ReGuS handles the exponentially expanding program search space for the DSL in Fig. 6 by leveraging

the following novel strategies:

Hierarchical Synthesis of Loop Sketches. ReGuS is a hierarchical program synthesis pro-

cedure, as visualized in Fig. 3. The high-level sketch generator searches a “skeletal" loop sketch

comprising solely of sequential or nested loop structures, where the loop bodies are represented as

placeholders yet to be completed. For the CleanHouse example, a loop sketch could be

while (not present(marker)) { ??𝐶 1
}; ??𝐶 2

(1)

where ??𝐶 represents a missing hole. The low-level sketch completer uses top-down enumeration to

fill out a loop sketch. To best use the reward information, it executes partially synthesized programs,

prioritizing exploration of those demonstrating high reward performance. The sketch completer

feeds back the highest reward attained by completing the loop sketch to the sketch generator. The

sketch generator, implemented as a variant of Monte Carlo Tree Search, uses the reward feedback

to improve its future sketch selections. ReGuS demonstrates exceptional performance, particularly

when task rewards are sporadically provided upon the robot’s completion of critical steps. The

directed high-level sketch generation procedure effectively utilizes the reward structures to identify

subtasks to be completed within separate loops. For example, in CleanHouse, ReGuS discovers a
program on top of the loop sketch in Equation 1 that can clean at least one marker (trash can) out

of the total markers in a house, and the other single-loop sketches with a different loop condition

hardly lead to a nonzero-reward program. ReGuS gives priority to loop sketches akin to Equation 1

and suggests the following sketch for generating a program capable of iteratively collecting all the

markers:

while (not present(marker)) {while (not present(marker)) { ??𝐶 1
}; ??𝐶 2

}; ??𝐶 3
(2)

On-demand Synthesis of Conditional Statements. ReGuS lazily synthesizes conditional

statements on an as-needed basis to reduce the search space for sketch completion. It infers pre- and

postconditions of each statement in a synthesized program by abstracting the states encountered

before and after executing the statement using the state abstraction predicates. A conditional

statement is inserted prior to an action statement when the state encountered before executing the

action does not meet the inferred pre-condition of the action, indicating an unanticipated scenario.
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while (not present(marker)) {
while (not present(marker)) {

{ ¬ leftIsClear() ∧frontIsClear()
∧ ¬ present(marker) }
move();

}; ??𝐶 2

}; ??𝐶 3

(a) A partial program of the CleanHouse controller. (b) Executing the program in Fig. 7a in CleanHouse.

Fig. 7. Fig. 7a is a partial program enumerated by ReGuS. The inferred precondition of the move action is
depicted in blue. Fig. 7b is the execution result of the partial program in Fig. 7a from the state in Fig. 5a.

while (not present(marker)) {
while (not present(marker)) {

if (leftIsClear()) { ??𝑆 }
{ ¬ leftIsClear() ∧frontIsClear()
∧ ¬ present(marker) }
move();

}; ??𝐶 2

}; ??𝐶 3

Fig. 8. ReGus adds a conditional statement to
Fig. 7a on-demand.

For example, Fig. 7a is a partial program enumerated

by ReGuS to solve the CleanHouse task. The agent is

initially at the entrance of the house (Fig. 5a), and

the inferred precondition of move is drawn in blue.

Particularly, the precondition asserts that in any state

before executing move, the left to the controlled agent

is not clear (i.e. there is a wall). The precondition is

valid until the state in Fig. 7b is encountered in a sub-

sequent inner loop iteration. The precondition is not

satisfied as the left of the agent in Fig. 7b is clear. At

this point, the axiomatic semantics of the partial pro-

gram in Fig. 7a and the actual execution results in Fig. 7b are out-of-sync. ReGuS then explores

the option of synthesizing a new conditional statement to synchronize the precondition and the

actual state before executing move by constructing a new sketch depicted in Fig. 8. With on-demand

conditional statement synthesis, ReGuS eventually finds the desired program in Fig. 5b.

Curriculum Synthesis of Procedural Calls. ReGuS uses procedures to enable knowledge

transfer across related tasks in similar environments. ReGuS incorporates programs learned for

simpler tasks into DSLs, treating them as procedures that can be utilized as skills. As the library

of skills expands, the learned procedures serve to compress the program search space, expediting

the synthesis of larger programs (Section 4.5). For example, the CleanHouse procedure (Fig. 5b)
can serve as a skill that a program can iteratively invoke in an outer loop to clean each floor of a

multi-floor house.

3 PROBLEM FORMULATION
We define a robot-control environment as a tuple (Λ, 𝑑,𝑂,𝐶) where Λ is a finite set of object types,

the map 𝑑 : Λ → 𝑁 defines the dimensionality of the real-valued feature vector for each type,

and 𝑂 is an object set where each object has a type drawn from Λ. As illustrated in Sec. 2.1, 𝐶

is a finite set of task-agnostic skills for low-level control in the continuous state space. A skill

𝑓 (𝜆0, . . . , 𝜆𝑀−1) ∈ 𝐶 , e.g. pickup(·), have typed parameters (𝜆0, . . . , 𝜆𝑀−1) where 𝑀 ≥ 0 and

𝜆𝑖 ∈ Λ. We frame reward-guided synthesis (ReGuS) as the problem of synthesizing domain-specific

programs to solve robot-control tasks formalized as Markov decision processes (MDPs).

Markov Decision Process (MDP). Given an environment (Λ, 𝑑,𝑂,𝐶), a robot task 𝑒 is modeled

as an MDP in a structure 𝑒 = (S, C,T : S × C × S → [0, 1], 𝜇 (S0),R : {S × C → R}). S is an

infinite set of continuous states. In each state 𝜎 ∈ S, every object 𝑜 ∈ O is mapped to a feature

vector in R𝑑 (type(𝑜)) . The action space C is induced by the objects 𝑂 and the low-level skills 𝐶

where an action 𝑐 := 𝑓 (𝑜0, . . . , 𝑜𝑀−1) applies a skill 𝑓 (𝜆0, . . . , 𝜆𝑀−1) ∈ 𝐶 to objects 𝑜0, . . . , 𝑜𝑀−1
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𝜎 ′ ∼ T (·| 𝜎, 𝑐)
𝑟 = R(𝜎 ′, 𝑐)
⟨𝜎, 𝑐⟩ ⇓ 𝜎 ′, 𝑟

⟨𝜎, 𝑆1⟩ ⇓ 𝜎 ′, 𝑟
⟨𝜎 ′, 𝑆2⟩ ⇓ 𝜎 ′′, 𝑟 ′

⟨𝜎, 𝑆1; 𝑆2⟩ ⇓ 𝜎 ′′, 𝑟 + 𝑟 ′
𝑏 (𝜎) ⟨𝜎, 𝑆1⟩ ⇓ 𝜎 ′, 𝑟
⟨𝜎, if (𝑏) 𝑆1 else 𝑆2⟩ ⇓ 𝜎 ′, 𝑟

¬𝑏 (𝜎) ⟨𝜎, 𝑆2⟩ ⇓ 𝜎 ′, 𝑟
⟨𝜎, if (𝑏) 𝑆1 else 𝑆2⟩ ⇓ 𝜎 ′, 𝑟

𝑏 (𝜎)
⟨𝜎, 𝑆⟩ ⇓ 𝜎 ′, 𝑟

⟨𝜎 ′, while (𝑏) 𝑆⟩ ⇓ 𝜎 ′′, 𝑟 ′

⟨𝜎, while (𝑏) 𝑆⟩ ⇓ 𝜎 ′′, 𝑟 + 𝑟 ′
¬𝑏 (𝜎)

⟨𝜎, while (𝑏) 𝑆⟩ ⇓ 𝜎, 0

Fig. 9. DSL operational semantics and reward evaluation.

and the objects must have types matching the typed parameters 𝜆0, . . . , 𝜆𝑀−1 of skill 𝑓 , such as

pickup(marker). We use type information to filter out unreasonable control actions, such as

pickup(door). T captures the state transition probabilities. R denotes the reward function. We

assume that any initial state 𝜎0 ∈ S0 of 𝑒 is sampled from a state distribution 𝜇 (S0). It is important

to note that T , R, and 𝜇 (S0) are unknown to ReGuS.

State Abstraction. A predicate ℎ := 𝑔(𝑜0, . . . , 𝑜𝑝−1) is a binary state classifier 𝑔(𝑂𝑝 ) : 𝑆 → {true,

false} characterized by an ordered list of types (𝜆0, . . . , 𝜆𝑝−1) where 𝑔(𝑂𝑝 ) is defined only when

each object 𝑜𝑖 has type 𝜆𝑖 , e.g. present(marker).
Operational Semantics with Rewards. ReGuS synthesizes programs based on the DSL in-

troduced in Fig. 6. We outline the DSL operational semantics in Fig. 9. A distinct feature is that

the DSL operational semantics tracks the cumulative reward achieved during program execution.

The rules are in the shape of ⟨𝜎, 𝑆⟩ ⇓ 𝜎 ′, 𝑟 . It specifies the semantics of executing a program 𝑆 in

the DSL from a state 𝜎 ∈ S. The resulting state of the execution is 𝜎 ′. The execution receives a

reward of 𝑟 from the environment. The Action rule is defined for a control action 𝑐 . The action

𝑐 is executed upon a state 𝜎 and the MDP transits to another state 𝜎 ′ as the effect of the action
according to the stochastic transition model T (𝜎 ′ |𝜎, 𝑐). The immediate reward of taking action 𝑐

at 𝜎 is given by the reward function 𝑟 = R(𝜎 ′, 𝑐).
Program Synthesis Objective. The objective of ReGuS is searching a robot-control program

𝜋∗ in the DSL in Fig. 6 for a task MDP 𝑒 such that

𝜋∗ = argmax

𝜋

E𝜎0∼𝜇, ⟨𝜎0, 𝜋 ⟩ ⇓ 𝜎𝑓 , 𝑟 𝑓

[
𝑟 𝑓

]
where 𝜎𝑓 and 𝑟 𝑓 are the resulting state and final reward by executing 𝜋 in the task MDP from a

state 𝜎0 sampled from the initial state distribution 𝜇 of 𝑒 .

4 REWARD-GUIDED PROGRAM SYNTHESIS
We present the core algorithms for reward-guided synthesis. We first provide ReGuS’s sketch

language, then present the top-level synthesis algorithm, and then describe its key components.

4.1 Sketch Language
As outlined in the ReGuS framework in Fig. 3, ReGuS employs a hierarchical synthesis procedure.

At the high level, ReGuS enumerates only "skeletal" programs. A skeletal program ??𝑆 is a loop

sketch that only contains sequential or nested loop structures with their loop bodies as “holes" yet

to be determined. We rewrite the grammar in Fig. 6 to describe the syntax of loop sketches:

Loop Sketch ??𝑆 ::= ??𝐶 ; while 𝑏 {??𝑆 }; ??𝑆 | ??𝐶 (3)

where ??𝐶 is a code block sketch, ??𝑐 is an unknown control action subject to enumerative search,

and skip is a special command used by ReGuS to complete a block:

Block ??𝐶 ::= ??𝑐 ; ??𝐶 | skip (4)
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4.2 Top-level Algorithm

Algorithm 1 Reward-guided Synthesis (ReGuS)

1: procedure ReGuS(𝑒: MDP, 𝜉 : reward threshold, 𝑁 : seeds)

2: 𝜀, 𝑟𝜀 , 𝑟best, Q ← ??S, −∞, −∞, { }
3: while 𝑟best < 𝜉 do
4: 𝜀∗ ← ReGuS𝑆𝑘𝑒𝑡 (𝜀, 𝑟𝜀)
5: if 𝜀∗ ∉ Q then Q[𝜀∗] ← ∅
6: 𝑟𝜀∗ ← ReGuS𝑃𝑟𝑜𝑔 (𝑒, 𝜀∗, Q[𝜀∗], 𝜉, 𝑁 )
7: if 𝑟𝜀∗ > 𝑟best then 𝑟best ← 𝑟𝜀∗

8: 𝜀, 𝑟𝜀 ← 𝜀∗, 𝑟𝜀∗

The top-level ReGuS algorithm is

outlined in Algorithm 1. The algo-

rithm takes as input a robot MDP

𝑒 , a reward threshold 𝜉 , and 𝑁 ran-

dom seeds with each seed initializ-

ing a random initial MDP state (e.g.

randomized object positions). The

𝑁 random seeds are used to create

diverse MDP instances for robot
learning. The goal is to synthesize

a programwhose averaged reward

across all potential initial states of

𝑒 meets 𝜉 . The reward threshold 𝜉 should be set as the maximum task reward. As the reward scale

can vary across tasks, ReGuS allows the user to specify 𝜉 . For example, for tasks with binary sparse

rewards that only signal if a task succeeds (1.0) or fails (0.0), 𝜉 is set to 1.0.

The algorithm repeatedly finds a loop sketch 𝜀∗ derived from the start symbol ??S via the sketch

generator ReGuS𝑆𝑘𝑒𝑡 (Line 4), following the loop sketch grammar expressed in Equation 3. Each

loop sketch 𝜀∗ is equipped with a unique program search queue Q[𝜀∗]. The sketch completer

ReGuS𝑃𝑟𝑜𝑔 (Line 6) attempts to fill the missing code blocks ??𝐶 in 𝜀∗, following the code block

grammar expressed in Equation 4, to search a program that has the best-averaged reward among all

possible executions from the initial states of 𝑒 . In Line 4, ReGuS𝑆𝑘𝑒𝑡 leverages the reward feedback

from sketch completion to prioritize the search order of highly likely loop sketches. In the following

discussion, we explain ReGuS𝑆𝑘𝑒𝑡 and ReGuS𝑃𝑟𝑜𝑔 in more detail.

4.3 Low-level Loop Sketch Completion
In this section, we illustrate the core ideas of sketch completion ReGuS𝑃𝑟𝑜𝑔 using the FourCorners
task taken from [48]. The goal of the agent is to put a marker at each of the four corners of a room

depicted in Fig. 11. The agent gets a 0.25 reward for each marker put in a corner. However, if a

marker is placed in other positions, the final reward is 0. For simplicity, we assume the agent starts

beside one of the walls. The state abstraction and actions for this example in the DSL (Fig. 6) are:

Object 𝑜 ∈ { marker }
State Abstraction ℎ ::= present(𝑜), leftIsClear(), rightIsClear(), frontIsClear()

Control Action 𝑐 ::= put(𝑜), pickUp(𝑜), turnLeft(), turnRight(), move() (5)

We further assume that the loop sketch given by the high-level sketch generator is:

while (not present(marker)) { ??𝐶 1
}; ??𝐶 2

(6)

where ??𝐶 1
and ??𝐶 2

are missing code blocks in the sketch.

The sketch completion algorithm ReGuSProg is outlined in Algorithm. 2. It takes a task MDP 𝑒 ,

a loop sketch 𝜀, a program search queue 𝑄 for 𝜀, the reward threshold 𝜉 and 𝑁 random seeds for

creating diverse MDP instances for synthesizing a generalizable program. It returns a program 𝜀best
empirically yielding the best reward 𝑟best averaged over all potential instances of 𝑒 . ReGuSProg per-

forms an execution-guided top-down enumerative search and on-demand synthesis of conditional

statements. As standard in top-down search, it utilizes the notion of partial programs [18, 19], which

can be thought of as an abstract syntax tree where some of the nodes are labeled with non-terminals

??C to be expanded later. By evaluating each partial program generated during synthesis in robot
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Algorithm 2 Reward-guided Loop Sketch Completion (ReGuSProg).

1: procedure ReGuSProg (𝑒: MDP, 𝜀: sketch, 𝑄 : search queue, 𝜉 : reward threshold, 𝑁 : seeds)

2: 𝑟best ← −∞ ⊲ 𝑖 holds the current random seed

3: if 𝑄 = ∅ then 𝑄.add({𝜀, 0, ⊥, −∞, −∞}) ⊲ If 𝑄 ≠ ∅, continue the search from 𝑄

4: while 𝑄 ≠ ∅ ∧ (max search budget not reached) do
5: 𝜀, 𝑖, 𝜎𝑓 , 𝑟 𝑓 , 𝑟𝑎𝑣𝑔 ← 𝑄.remove

(
argmax{𝜀, 𝑖, 𝜎𝑓 , 𝑟 𝑓 , 𝑟𝑎𝑣𝑔 }∈𝑄 𝑟𝑎𝑣𝑔 − 𝜆· cost (𝜀)

)
6: if 𝑟𝑎𝑣𝑔 ≥ 𝑟best then 𝑟best ← 𝑟𝑎𝑣𝑔
7: if 𝑖 ≥ 𝑁 then break ⊲ 𝜖 has surpassed the reward threshold across all 𝑁 seeds

8: if 𝜎𝑓 ≠ (⊥, _) ∧ 𝑟 𝑓 ≥ 𝜉 then
9: 𝜎 ← reset(𝑒, 𝑖 + 1) ⊲ 𝜀 ′ meets the reward threshold on seed 𝑖; search on seed 𝑖 + 1
10: 𝜀 ′, 𝜎𝑓 , 𝑟 𝑓 ← Exec(𝜎, 𝜀) ⊲ Apply synthesis rules in Fig. 10

11: 𝑄.add({𝜀 ′, 𝑖 + 1, 𝜎𝑓 , 𝑟 𝑓 , eval(𝜀)}) ⊲ Eval avg. reward of 𝜀 ′ across all 𝑁 seeds

12: else if 𝜎𝑓 = (⊥, ??A) then ⊲ 𝜀 is a partial program with nonterminal A
13: for each produce rule 𝑙 for A do
14: 𝜀 ′← expand(𝜀, A, 𝑙 ) ⊲ Expand A using production rules

15: 𝜎 ← reset (𝑒, 𝑖) ⊲ Reset 𝑒 with random seed 𝑖 to an initial state.

16: 𝜀 ′′, 𝜎𝑓 , 𝑟 𝑓 ← Exec(𝜎, 𝜀 ′) ⊲ Apply synthesis rules in Fig. 10

17: 𝑄.add({𝜀 ′′, 𝑖, 𝜎𝑓 , 𝑟 𝑓 , eval(𝜀 ′′)}) ⊲ Eval avg. reward of 𝜀 ′′ across all 𝑁 seeds

18: return 𝑟best

environments, it uses reward information to prioritize exploring program search directions leading

to the highest reward performance. We extend the DSL operational semantics in Fig. 9 to support

evaluating partial programs:

⟨𝜎, ??𝐶⟩ ⇓ (⊥, ??𝐶 ), 0
where ??𝐶 is a nonterminal symbol in the partial program reached during execution that prevents it

from further proceeding and ⊥ is an indicator denoting that a program cannot be executed beyond

this point. The reward is 0 since a nonterminal cannot be evaluated. For example, given a partial

program (move(); ??𝐶 1
), the resulting state is (⊥, ??𝐶 1

) i.e. the execution cannot resume beyond

??𝐶 1
. The reward of this partial program is the reward of taking move() in the task MDP.

ReGuSProg uses the priority queue 𝑄 to manage partially synthesized programs derived from the

provided loop sketch 𝜀. Each element in 𝑄 is a tuple comprising a (partial) program 𝜀, the current

random seed 𝑖 used in the search for 𝜀, final state 𝜎𝑓 and final reward 𝑟 𝑓 obtained by executing 𝜀

in the MDP instance initialized by random seed 𝑖 , averaged reward 𝑟𝑎𝑣𝑔 acquired by evaluating 𝜀

across all 𝑁 MDP instances induced by the 𝑁 random seeds.𝑄 ranks partial programs by their reward

performance 𝑟𝑎𝑣𝑔 regularized by the structural cost cost (𝜀), as indicated in Line 5 of Algorithm 2.

Structure costs bias ReGuS to generate simpler programs that are more likely to generalize. Let

each production rule of the DSL have a non-negative cost defined as cost(𝑙). The structural cost of
a program 𝜀 is cost(𝜀) = ∑

𝑙 ∈L(𝜀) cost(𝑙), where L(𝜀) is the multiset of production rules used to

construct 𝜀. The hyper-parameter 𝜆 dictates the balance between structure cost and rewards.

In each iteration of the loop in Algorithm 2 lines 4–17, ReGuSProg dequeues a partial program 𝜀

in𝑄 (Line 5). If the execution of 𝜀 in the MDP instance induced by random seed 𝑖 did not encounter

any nonterminal symbol and the final reward obtained by the execution meets the reward threshold

(Line 8), the algorithm goes on searching for 𝜀 using a new initial MDP state 𝜎 induced by the

next random seed 𝑖 + 1 (Line 9). At line 10, the Exec procedure executes 𝜀 from 𝜎 to obtain its

final state 𝜎𝑓 and reward 𝑟 𝑓 in the new MDP instance. It may also return an updated version of

𝜀 through on-demand conditional statement synthesis. The formalization of the Exec procedure
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Action-Hoare

𝜑 (𝜎) or 𝜑 ≡ 𝐹𝑎𝑙𝑠𝑒 ⟨𝜎, 𝑐⟩ ⇓ 𝜎 ′, 𝑟
𝜎, {𝜑}𝑐{𝜓 } ⊲ {𝜑 ⊔ 𝛼 (𝜎)} 𝑐 {𝜓 ⊔ 𝛼 (𝜎 ′)}, 𝜎 ′, 𝑟

Action-LazyBranch

¬𝜑 (𝜎) 𝑏 ∈ H 𝑏 (𝜎)
𝜎, {𝜑}𝑐{𝜓 } ⊲ if(𝑏) {??𝑆 }; {𝜑}𝑐{𝜓 }, (⊥, ??𝑆 ), 0

Compound-Hoare

𝜎, 𝑆 ; ⊲ 𝑆 ′, 𝜎 ′, 𝑟 𝜎 ′ ≠ (⊥, _)
𝜎, {𝜑} 𝑆 {𝜓 } ⊲ {𝜑 ⊔ 𝛼 (𝜎)} 𝑆 {𝜓 ⊔ 𝛼 (𝜎 ′)}, 𝜎 ′, 𝑟

Comp1

𝜎, 𝑆1; ⊲ 𝑆
′
1
, 𝜎 ′, 𝑟 𝜎 ′ = (⊥, _)

𝜎, 𝑆1; 𝑆2 ⊲ 𝑆 ′
1
; 𝑆2, 𝜎

′, 𝑟

Comp2

𝜎, 𝑆1; ⊲ 𝑆
′
1
, 𝜎 ′, 𝑟1 𝜎 ′, 𝑆2 ⊲ 𝑆 ′

2
, 𝜎 ′′, 𝑟2

𝜎, 𝑆1; 𝑆2 ⊲ 𝑆 ′
1
; 𝑆 ′

2
, 𝜎 ′′, 𝑟1 + 𝑟2

While-Skip

¬𝑏 (𝜎)
𝜎, while (𝑏) {𝑆} ⊲ while (𝑏) {𝑆}, 𝜎, 0

While-Sketch1

𝑏 (𝜎)
𝜎, 𝑆 ⊲ 𝑆 ′, 𝜎 ′, 𝑟
𝜎 ′ = (⊥, _)

𝜎, while (𝑏) {𝑆} ⊲ while (𝑏) {𝑆 ′}, 𝜎 ′, 𝑟

While-Sketch2

𝑏 (𝜎)
𝜎, 𝑆 ⊲ 𝑆, 𝜎 ′, 𝑟 𝜎 ′ ≠ (⊥, _)

𝜎 ′, while (𝑏) {𝑆} ⊲ while (𝑏) {𝑆 ′}, 𝜎 ′′, 𝑟 ′

𝜎 ; while (𝑏) {𝑆} ⊲ while (𝑏) {𝑆 ′}, 𝜎 ′′, 𝑟 + 𝑟 ′

If-Erase

𝑆1 ≡ 𝑐1; ??𝑆 𝑐1 = 𝑐2 ⟨𝜎, 𝑐2⟩ ⇓ 𝜎 ′, 𝑟
𝜎, if (𝑏) {𝑆1}; {𝜑2} 𝑐2 {𝜓2} ⊲ {𝛼 (𝜎) ⊔ 𝜑2} 𝑐2 {𝛼 (𝜎 ′) ⊔𝜓2}, 𝜎 ′, 𝑟

If-Merge

𝑆1 ≡ 𝑠11 ; 𝑠
1

2
; · · · ; {𝜑1

𝑘
} 𝑠1

𝑘
{𝜓1

𝑘
}; skip

(𝑆 = join(𝑆1, 𝑆2)) ≠ ⊥ 𝜎, 𝑆 ⊲ 𝑆 ′, 𝜎 ′, 𝑟

𝜎, if (𝑏) {𝑆1}; 𝑆2 ⊲ 𝑆 ′, 𝜎 ′, 𝑟

If-Merge-Fail

𝑆1 ≡ 𝑠11 ; 𝑠
1

2
; · · · ; {𝜑1

𝑘
} 𝑠1

𝑘
{𝜓1

𝑘
}; skip

join(𝑆1, 𝑆2) = ⊥
𝜎, if (𝑏) {𝑆1}; 𝑆2 ⊲ ⊥, ⊥, 0

If-T

𝑏 (𝜎) 𝜎, 𝑆1 ⊲ 𝑆 ′
1
, 𝜎 ′, 𝑟

𝜎, if (𝑏) 𝑆1 else 𝑆2 ⊲ if (𝑏) 𝑆 ′
1
else 𝑆2, 𝜎 ′, 𝑟

If-F

¬𝑏 (𝜎) 𝜎, 𝑆2 ⊲ 𝑆 ′
2
, 𝜎 ′, 𝑟

𝜎, if (𝑏) 𝑆1 else 𝑆2 ⊲ if (𝑏) 𝑆1 else 𝑆 ′2, 𝜎
′, 𝑟

Fig. 10. The Exec Procedure: 𝜎, 𝜀 ⊲ 𝜀 ′, 𝜎 ′, 𝑟 . The synthesis rules are based on the syntax of 𝜀. ⇓ defines the
semantics (Fig. 9). 𝛼 abstracts a concrete state using state abstraction predicates associated with the DSL.

will be detailed shortly. The program and its execution results are enqueued for further processing

at Line 11. The search process in ReGuSProg continues until a synthesized program achieves the

maximum reward on all 𝑁 random seeds, terminating the search (Line 7).

Example 1. In the maze environment depicted in Fig. 4, consider an instance where the goal

position is near the bottom. ReGuSProg could generate a program that guides the agent to move

forward and turn left whenever obstructed by a wall to reach the goal. However, this program does

not generalize to the other instances with the goal position at the top. For such cases, Exec inserts

an if-statement into the program by need, enabling ReGuSProg to eventually find a program that

instructs the agent to turn right when the path to the right is clear for reaching the top goal.

If the execution of a partial program 𝜀 on the MDP instance induced by seed 𝑖 does encounter

a nonterminal symbol (Line 12), ReGuSProg expands the nonterminal by enumerating all suitable

production rules for the missing hole (Line 14). For each expanded program 𝜀 ′, ReGuSProg uses the
Exec procedure to execute 𝜀 ′ in the MDP instance induced by the current seed 𝑖 (Line 16), then

adds 𝜀 ′ and its final state and reward back to 𝑄 for further processing (Line 17).

The Exec Procedure. We describe Exec using the synthesis rules of the following shape:

𝜎, 𝜀 ⊲ 𝜀 ′, 𝜎𝑓 , 𝑟 𝑓
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while (not present(marker)) {
{leftIsClear() ∧ frontIsClear()∧¬rightIsClear() ∧ ¬present(marker)}
move();
{leftIsClear() ∧ frontIsClear()∧¬rightIsClear ∧ ¬present(marker)}

}; ??𝐶 2

Fig. 11. Pre and postcondition inference of while (not present(marker)) {move; }; ??𝐶 2
in FourCorners.

while (not present(marker)) {
{leftIsClear() ∧ frontIsClear()∧¬rightIsClear() ∧ ¬present(marker)}
move();
{leftIsClear()∧¬rightIsClear() ∧ ¬present(marker)}

}; ??𝐶 2

Fig. 12. Widen the postconditon of move in Fig. 11 to include an unseen state resulting from executing move.

where 𝜀 represents a (partial) program, and 𝜎 is the state from which 𝜀 is to be executed. The Exec

procedure accomplishes three tasks: (1) it evaluates 𝜀 using the DSL semantics ⟨𝜎, 𝑆⟩ ⇓ 𝜎𝑓 , 𝑟 𝑓 (as
depicted in Fig. 9), where 𝜎𝑓 represents the final state, and 𝑟 𝑓 is the reward obtained from the

execution. (2) It deduces (underapproximated) pre- and post-conditions for each program statement.

(3) It may modify 𝜀 into a new program 𝜀 ′ by leveraging inferred preconditions and postconditions

to synthesize conditional statements on an as-needed basis. Fig. 10 depicts the synthesis rules.

Action Synthesis Rules. TheAction-Hoare rule is applied to an action 𝑐 . For any new program

statement that is just enumerated to fill a missing hole in a sketch, we assume its initial pre- and

post-conditions are 𝐹𝑎𝑙𝑠𝑒 . ReGuS executes an action 𝑐 only if the current program state 𝜎 satisfies

the precondition 𝜑 of 𝑐 or 𝜑 is the initial 𝐹𝑎𝑙𝑠𝑒 . Following the DSL operational semantics, this

execution produces the resulting state 𝜎 ′ and receives a reward 𝑟 from the environment. We define

𝐻 as the set of state abstraction predicates equipped within the DSL (Equation 5) and H as the

lattice space of the (conjunctive) predicate abstraction domain formed by these state abstraction

predicates. We lift concrete states 𝜎 and 𝜎 ′ before and after executing 𝑐 into its precondition 𝜑 and

postcondition𝜓 by leveraging the state abstraction predicates 𝐻 :

𝛼 (𝜎) ≡ {ℎ if ℎ(𝜎) otherwise ¬ℎ | ∀ℎ ∈ 𝐻 }
The state abstraction function 𝛼 (𝜎) constructs a Boolean conjunction of literals where each literal

is a predicate ℎ(𝜎) or its negation ¬ℎ(𝜎) evaluated on 𝜎 . The rule widens the current precondition

𝜑 (resp. postcondition𝜓 ) by joining it with 𝛼 (𝜎) (resp. 𝛼 (𝜎 ′)) in the abstract domainH .

Example 2. Assume that the sketch in Equation. 6 is expanded to the partial program in Fig. 11.

ReGuS abstracts the states before and after executing move (assuming that the agent is initially at

the left bottom corner facing east). When ReGuS continues to execute the partial program in Fig. 12,

it discovers that the inferred postcondition of move is no longer valid when the agent touches the

right wall in the state depicted in Fig. 12. The postcondition is widened to include this new state.

The Action-LazyBranch rule allows ReGuS to synthesize conditional statements on demand. It

applies when the state 𝜎 encountered before executing an action 𝑐 does not satisfy the previously

inferred precondition 𝜑 of 𝑐 , which indicates that 𝑐 is about to be executed in an unknown state.

This situation commonly occurs when 𝑐 is evaluated in a subsequent loop iteration or from a

different initial state. The rule appends an if statement with a sketch ??𝑆 before 𝑐 , creating a branch

point. The intuition is that since 𝜎 is new to the program, a new piece of statements might be

needed to handle it. The if condition 𝑏 ∈ H evaluates to true on the unseen state.

Example 3.When we continue to execute move from the state in Fig. 12, the precondition is no

longer valid (as the front of the agent is not clear before executing move). The inferred axiomatic
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semantics of the partial program in Fig. 12 (left) and the actual execution state of the program

in Fig. 12 (right) are out-of-sync. ReGuS resolves the disagreement by exploring the option to

synthesize a new conditional statement to synchronize the precondition and the actual state before

executing move. The new sketch is depicted in Fig. 13.

while (not present(marker)) {
if (not frontIsClear()) { ??𝑆 }
{ leftIsClear() ∧ frontIsClear() ∧
¬ rightIsClear() ∧ ¬ present(marker) }
move();
{ leftIsClear() ∧
¬ rightIsClear() ∧ ¬ present(marker) }

}; ??𝐶 2

Fig. 13. ReGuS synthesizes a new conditional as the
current running state in Fig. 12 before executing move
does not meet the inferred precondition of move.

The Compound-Hoare rule applies to all

compound statements (e.g. loops and condi-

tional statements). It infers the precondition

and postcondition of a compound statement 𝑆

by abstracting the states encountered before

and after executing 𝑆 via the state abstraction

function 𝛼 .

Sequential Statement Synthesis Rules.
The Comp1 rule applies to a sequential state-

ment 𝑆1; 𝑆2 when the execution of 𝑆1 results

in a sketch 𝑆 ′
1
due to on-demand conditional

statement synthesis. The resulting state is ⊥ as

the program is incomplete. The Comp2 rule is straightforward.

Loop Statement Synthesis Rules. TheWhile-Sketch1 rule applies when the execution of the

first iteration of a loop encounters a nonterminal e.g. the loop body 𝑆 is incomplete. The execution

cannot proceed beyond it. The While-Sketch2 rule is standard. It allows on-demand conditional

statement synthesis at any subsequent loop iteration beyond the first one, updating the loop body

𝑆 to 𝑆 ′ with an appended conditional statement, as exemplified in Fig. 13.

Conditional Statement Synthesis Rules. The If-Erase rule relates to an if (𝑏) {??𝑆 1} state-
ment appended before an action statement 𝑐2 by theAction-LazyBranch rule. If the first statement

to fill ??𝑆 1 is an action 𝑐1 that is equivalent to 𝑐2, the conditional statement is unnecessary as 𝑐1 is

executed on both branches regardless of the Boolean condition 𝑏. The rule joins the preconditions

and postconditions of the shared action 𝑐2 in both branches while eliminating the conditional state-

ment. The If-Merge rule evaluates an if (𝑏) {𝑆1} statement appended by Action-LazyBranch at

a branch point before a compound statements 𝑆2. The rule applies when the expansion of 𝑆1 has

been completed with a skip command, per the sketch grammar in Equation 3 and 4. Intuitively,

𝑆1 and 𝑆2 perform different actions depending on the Boolean condition 𝑏. This rule expects the

control of either computation to return to a merge point with consistent postconditions. The join
function below searches a merge point in 𝑆2 by comparing the last statement 𝑠𝑘

1
of 𝑆1 with each

statement in 𝑆2, where we use 𝑆 [ 𝑗 :𝑘 ] to denote the subsequence of statements from the 𝑗 th to the

𝑘 th statement in 𝑆 :

join(𝑆1, 𝑆2) =
assume 𝑆1 ≡ 𝑆1 [1:𝑘 ] ; {𝜑𝑘

1
} 𝑠𝑘

1
{𝜓𝑘

1
}; skip

if ∃ 𝑗 . 𝑆2 ≡ 𝑆2 [1:𝑗 ] ; {𝜑 𝑗

2
} 𝑠 𝑗

2
{𝜓 𝑗

2
}; 𝑆2 [ 𝑗+1:]

∧
𝑠𝑘
1
= 𝑠

𝑗

2

∧
𝜓𝑘
1
⇒ 𝜓

𝑗

2

then return { if (𝑏) 𝑆1 [1:𝑘 ] else 𝑆2 [1:𝑗 ] ; {𝜑𝑘
1
⊔ 𝜑 𝑗

2
} 𝑠 𝑗

2
{𝜓 𝑗

2
}; 𝑆2 } else return ⊥

If 𝑠𝑘
1
is syntactically equivalent to the 𝑗-th statement 𝑠

𝑗

2
in 𝑆2 and the postcondition of 𝑠𝑘

1
in 𝑆1

implies that of 𝑠
𝑗

2
meaning that the resulting state of taking 𝑠𝑘

1
has previously been seen, a merge

point is found at 𝑗 . At the merge point, we join the postconditions of 𝑠𝑘
1
and 𝑠

𝑗

2
.

Example 4. Assume that ReGuS has expanded the body ??𝑆 of the appended if statements in

Fig. 13 to a sequence of actions in Fig. 14. ReGuS favors the action put(marker) as performing this

action can receive a reward of 0.25 from the environment for placing a marker in the bottom right

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.



217:14 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

while (not present(marker)) {
if (not frontIsClear()) {
put(marker);
turnLeft();
move();
{leftIsClear() ∧ frontIsClear()∧¬rightIsClear() ∧ ¬present(marker)}
skip
}
move();
{leftIsClear()∧¬rightIsClear() ∧ ¬present(marker)}

}; ??𝐶 2

Fig. 14. ReGuS fills out the if statement in Fig. 13. The postconditions of the two move statements are shown.

corner. In Fig. 14, move is a merge point - the postcondition of the first move within the if body
implies the postcondition of the same move action outside the if scope. Fig. 15 shows a program
derived through the If-Merge rule. This program can successfully place a marker on each of the

four corners.

while (not present(marker)) {
if (not frontIsClear()) {

put(marker);
turnLeft();

} else { }
move();

}; ??𝐶 2

Fig. 15. ReGuS applies the If-Merge syn-
thesis rule (Fig. 10) to join the branches of
the conditional statement in Fig. 14.

The If-Merge-Fail rule applies when a merge point

cannot be found by the join function. In this case, the

program is reduced to⊥ to notify the sketch completer to

prune away this search direction. This rule does not affect

the completeness of ReGuS. Interested readers can find

more details in the extended version [12]. This design

choice is particularly beneficial for robot learning where

diverse agent behaviors often need to converge at key

sub-goals. For example, in a task for household cleaning,

when a home-assisted robot encounters a locked door,

its desired behavior converges at the subgoal of passing

through the door, regardless of whether it currently has the key. The If-Merge-Fail rule prunes

away partial programs that cannot open the door when the robot does not initially have the key.

4.4 High-Level Loop Sketch Generation
ReGuS generates high-level loop sketches containing loop bodies as "holes" to be completed by the

sketch completer (Sec. 4.3). We approach loop sketch generation as a tree search. Each node in the

tree represents a sketch allowed by the sketch grammar. (same as Equation 3):

Loop Sketch ??𝑆 ::= ??𝐶 ; while 𝑏 {??𝑆 }; ??𝑆 | ??𝐶
In the following, we use the terms "tree node" and "sketch" interchangeably. The root node corre-

sponds to the empty sketch ??𝑆 . A tree edge (𝑢,𝑢 ′) encodes a single-step application of a production

rule in the sketch grammar to obtain the sketch 𝑢 ′ by replacing a nonterminal ??𝑆 in the sketch

𝑢. A terminal loop sketch only contains nonterminals ??𝐶 (code block) and can be filled out by the

sketch completer ReGuS𝑃𝑟𝑜𝑔 (Algorithm 2). Terminal loop sketches are found on the leaf nodes of a

search tree. Given a robot task MDP 𝑒 , we measure the reward 𝑟 of a terminal loop sketch 𝜀∗ as:

𝑟 (𝜀∗) = ReGuS𝑃𝑟𝑜𝑔 (𝑒, 𝜀∗,Q[𝜀∗], 𝜉, 𝑁 )
whereQ[𝜀∗] is the program search queue for 𝜀∗, 𝜉 is the task reward threshold, and 𝑁 is the number

of random seeds to initialize MDP instances in Algorithm 1 and 2.

The sketch generator ReGuSSket is a variant of Monte Carlo Tree Search (MCTS). In each iteration,

it samples one terminal loop sketch from the search tree. The best reward achieved by the sketch
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completer on this sketch is used to weigh the nodes in the search tree so that better sketches are

more likely to be chosen in the future. ReGuSSket repeats four steps at each search iteration:

• Selection: The tree is traversed from the root guided by the score of each node (defined below)

until reaching either a leaf or a node 𝑢 that still has one or more unexplored ??𝑆 nonterminals.

• Expansion: If sketch 𝑢 has unexplored ??𝑆 nonterminals, we create a child node 𝑢 ′ which is

obtained by expanding the leftmost nonterminal ??𝑆 of 𝑢 using either the sketch production rule

??𝑆 ::= ??𝐶 or ??𝑆 ::= ??𝐶 ; while 𝑏 {??𝑆 }; ??𝑆 , as presented in Equation 3.

• Synthesis: This step assesses the reward of the new expansion. If sketch 𝑢 is already a leaf node,

we set 𝜀∗ = 𝑢. Otherwise, we iteratively expand any remaining nonterminal ??𝑆 on the newly

created node 𝑢 ′ until a terminal loop sketch 𝜀∗ is derived. ReGuS then evaluates the reward of 𝜀∗

using the function 𝑟 (𝜀∗).
• Backpropagation: The reward feedback 𝑟 (𝜀∗) from the sketch completer is propagated recursively

to all the traversed tree nodes to update the averaged reward of branching from these nodes.

In the selection step, the score of each tree node 𝑢 is computed by UCT (Upper Confidence Bound

1 applied to trees) [28] as follows: 𝑈𝐶𝑇𝑢 = (𝑅𝑢 + 2𝐶𝑝

√︃
2 ln𝑇
𝑇𝑢
) where 𝑅𝑢 is the averaged reward

feedback received on terminal loop sketches branching from node 𝑢,𝑇 is the number of visits of the

parent of𝑢 during tree search,𝑇𝑢 is the number of visits of𝑢 and𝐶𝑝 is the exploration constant. The

child node with the greatest𝑈𝐶𝑇 is selected during tree exploration. UCT is a standard mechanism

to balance between exploitation (the first component of the formula) and exploration (the second

component of the formula) for tree search. An example is given in the extended version [12].

4.5 Curriculum Synthesis

def skill𝑗(obj):
while (not present(obj)) {

while (not present(obj)) {
. . .

}; pickUp(obj);
}; pikcUp(obj);

Fig. 16. Skill Lifting.

Robots are often assigned a variety of related tasks rather than

being tasked with a single specific problem. These tasks differ

in their complexity, involving various objects to manipulate

and different goals to achieve. Synthesizing programs for ro-

bot control has the additional benefit of enabling knowledge

transfer across tasks via reusable procedures. ReGuS ranks a

sequence of related tasks according to their complexity e.g. the

number of objects to manipulate to form a curriculum for the

synthesizer. ReGuS adds programs synthesized to solve simpler

tasks as new skills in the form of callable procedures to the DSL in Fig. 6. These new procedures

serve as building blocks to constitute sophisticated programs for more complex tasks.

To lift a program to a procedure, we abstract the various environment objects O manipulated by

the program to the parameters of the procedure. For instance, the CleanHouse program depicted

in Figure 5b can be abstracted to a procedure skill𝑗 (where the specific name is not of significance),

shown in Fig. 16. Adding this skill of cleaning one floor to the DSL, ReGuS can efficiently synthesize

a robot-control program that iteratively invokes this procedure in a loop to clean a multi-floor house.

As the set of robot skills grows in the DSL, the program search space becomes more efficiently

compressed by these new skills.

5 EXPERIMENTS
ReGuS

1
is written in Python. In our implementation, to ensure program termination, we add

"return" as a special action and add a penalty reward to programs that do not terminate within the

task horizon for the agent to learn to terminate its execution when goal conditions are satisfied.

1
The source code of ReGuS is available at https://github.com/RU-Automated-Reasoning-Group/ReGuS
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(a) StairClimber (b) FourCorners (c) TopOff (d) Maze (f) Harvester(e) CleanHouse (g) Seeder

Fig. 17. Tasks of the "karel The Robot"

Our experiments are designed to answer the following research questions:

• (RQ1) How significant is the use of loop sketch synthesis and on-demand conditional statement

synthesis in the ReGuS algorithm?

• (RQ2) Does curriculum synthesis enable ReGuS to expedite the generation of large programs

needed for complex tasks, which would be challenging to synthesize?

• (RQ3) How effective is ReGuS at learning robot-control programs for tasks with stochastic and

continuous state spaces?

Main Baselines. Throughout the evaluation, we consider two important deep reinforcement

learning (DRL) baselines.

• DRL: A deep reinforcement learning agent that takes raw environment states as input and

produces a control action. The agent is implemented as a deep feedforward neural network

trained by proximal policy optimization (PPO) [43], a state-of-the-art DRL algorithm.

• DRL-abs: A DRL agent that takes abstract states as input. This baseline allows for a fair com-

parison to ReGuS as both approaches utilize the same state abstraction. All returned values of

abstraction predicates e.g. { frontIsClear() == true, present(marker) == false, . . . }

are concatenated as a binary vector, which is fed to a recurrent deep neural network as its input.

ReGuS and the baselines share the same control action space parameterized by the finite set of

task-agnostic robot skills (as defined in Sec. 3).

5.1 RQ1: Loop Sketch Synthesis and On-demand Conditional Statement Synthesis
We use a suite of discrete state and action environments with the "Karel The Robot" simulator [37],

taken from [48], to evaluate the capability of hierarchical loop sketch synthesis and on-demand

conditional statement synthesis. In these environments visualized in Figure 17, an agent navigates

inside a 2D grid world with walls and modifies the world state by interaction with markers. These

tasks feature randomly sampled agent positions, walls, markers, and goal configurations. For these

environments, we equip our DSL (Fig. 6) with the state abstraction predicates and actions defined in

Equation 5. DoorKey, CleanHouse and FourCorners are running examples in the paper. In DoorKey,
the agent gets a sporadic reward of 0.5 for picking up the first key and 1.0 for dropping it onto the

second key. On StairClimber, the goal is to climb the stairs to reach the marker to get a reward

of 1. The reward is −1 if the agent moves into an invalid position off the stairs and 0 otherwise. On

TopOff, the goal is to put a marker in any position already with a marker and reach the rightmost

square on the bottom row. The reward is defined as the number of markers correctly placed (the

reward is normalized to a value between 0 and 1). On Maze, the goal is to find a marker inside a

random maze to get a reward of 1. On Harvester, the goal is to pick up all the markers. Similarly,

Seeder requires the agent to place exactly one marker on all grids. Onestroke requires traversing

the environment without revisiting the same position as the visited grids become walls and the

episode terminates if the agent hits a wall. The reward for these environments is determined by

the ratio of successfully placed markers or visited grids.
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(a) StairClimber (b) FourCorners (c) TopOff (d) Maze

(e) CleanHouse (f) Harvester (g) Doorkey (h) Seeder

Fig. 18. Comparing ReGuS against the baselines on the Karel domain. The x-axis denotes the number of
robot-environment interactions (simulation steps). The y-axis records the rewards of learned controllers.

Table 1. Comparing the mean time in seconds (with standard deviation) used by ReGuS against baselines for
synthesizing a program achieving the maximal reward 1.0 in the Karel domain.

StairClimber FourCorners TopOff Maze CleanHouse Harvester DoorKey Seeder

EnumS >2hrs 1170.82 1609.06 3611.09 >2hrs >2hrs >2hrs >2hrs

EnumR >2hrs 1187.31 184.21 2980.31 >2hrs >2hrs > 2hrs >2hrs

ReGuS
Sket

+EnumR >2hrs 221.79 >2hrs >2hrs >2hrs >2hrs >2hrs >2hrs

EnumS+ReGuSProg 20.13 3.76 3.10 135.04 890.12 1262.79 >2hrs 1599.97

ReGuS 22.02 3.52 2.85 124.83 537.67 171.38 2623.51 259.54

Fig. 18 depicts the learning performance in terms of the agent’s rewards over 5 runs of each tool.

We show the average (solid line) and std dev (shaded) rewards over the course of training. The

rewards are collected by evaluating each program or neural policy for 1000 random initial states.

ReGuS successfully synthesized programs getting 1.0 reward on all the tasks and exhibited the best

data efficiency over the baselines.

Ablation Study. We studied the importance of hierarchical loop sketch synthesis and on-demand

conditional statement synthesis through an ablation study.:

• EnumS: top-down enumeration of programs in order of increasing complexity measured by

program structural cost (defined in Sec. 4.3).

• EnumR: top-down enumeration of (partial) programs ranked by both rewards and structural costs

as in ReGuS but without loop sketch synthesis and on-demand conditional statement synthesis.

• ReGuSSket+EnumR: This ablation replaces the sketch completer ReGuSProg in ReGuS with EnumR

(sketch completion does not use on-demand conditional statement synthesis).

• EnumS+ReGuSProg: This ablation replaces the sketch generator ReGuSSket in ReGuS with EnumS

(sketch generation does not use reward feedback from sketch completion)
2
.

Table. 1 presents the time taken by all the tools to find a program that achieves the maximal 1.0

reward across 1000 random initial states. The results are averaged over five trials. The enumeration

baselines EnumS and EnumR perform significantly worse than ReGuS on all tasks, demonstrating the

2
EnumR cannot be used because rewards cannot be assigned to “intermediate" sketches that still have ??𝑆 symbols.
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Fig. 19. Tasks of the MiniGrid Environments.

effectiveness of ReGuS’s strategy for decomposed search space for loops. ReGuSSket+EnumR times

out on most of the benchmarks whereas ReGuS solves all the tasks in a few minutes, highlighting

the necessity of on-demand conditional statement synthesis to reduce the large program search

space. ReGuS outperforms EnumS+ReGuSProg on tasks requiring complex loop structures such as

CleanHouse, Harvester, seeder, and DoorKey, showing the importance of hierarchical synthesis

of loop sketches. The reward feedback from sketch completion acts as an effective heuristic to

guide the generation of high-quality loop sketches.

5.2 RQ2: Curriculum Synthesis

Fig. 20. ReGuS’s performance on the Mini-
Grid tasks, evaluated over 5 trails. Each
program is tested with 1000 random seeds.

We evaluate how ReGuS can expedite program synthesis

for a stream of tasks with various complexity using Min-

iGrid [11], a collection of gridworld environments with

goal-oriented tasks, widely used to evaluate state-of-the-

art reinforcement learning algorithms. The agent can only

detect if an object presents within its visible area (gray

region). We focus on 7 tasks depicted in Fig. 19. Crossing:
the agent has to reach a goal randomly placed in a room

with intersecting walls. LavaCrossing: Similar to Cross-

ing, but with lava streams that terminate the episode with

zero rewards upon contact by the agent.MultiRoom: the

agent has to navigate randomly connected rooms with

closed doors to reach a goal. LockedRoom: the agent has

to find a key in a room to unlock another room that houses

the goal. DoorKey: similar to LockedRoom, but the key is initially in the same room as the agent

(this is more challenging than Karel-DoorKey in Fig. 2 because this environment lacks the 0.5

reward for key pickup). PutNear: the agent needs to pick up a key in one room and place it next to

another box hidden behind a locked door. UnlockPickup: the agent has to use a key to enter a

locked room, drop the key, and then pick up a box. These environments feature random initial agent

and object positions. As the tasks involve interacting with various objects, the state abstraction

and control action space is significantly more complicated than that of Karel (Equation 5). In each

environment, a positive reward of 1.0 is given only when the goal condition is satisfied. These tasks

are known to be challenging to state-of-the-art RL algorithms due to their sparse reward setting,

long horizon, and partial observability [11].

We depict ReGuS’s learning performance in Fig. 20. As these tasks increase in complexity as the

number of objects to manipulate increases, ReGuS adds programs synthesized for a simpler task as

a new skill that can be reused to constitute sophisticated programs for more complex tasks. For

example, ReGuS adds the goal-reaching program synthesized for the third environmentMultiroom
as a new skill skill3 (𝑜𝑏 𝑗) to the DSL. This skill can then be reused as a new control action in the

form of callable procedures such as skill3 (𝑘𝑒𝑦) and skill3 (𝑑𝑜𝑜𝑟 ). When synthesizing a program in

LockedRoom, the agent can call skill3 (𝑘𝑒𝑦) to grab the key if it faces a locked door. It can then
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Autonomous Highway Driving

Ant U-shaped Maze Ant S-shaped Maze Ant Π-shaped Maze Ant "-shaped Maze

Ant U-shaped Maze Ant S-shaped Maze Ant Π-shaped Maze Ant "-shaped MazeFetch-HookFetch-Pick&Place

Fig. 21. Evaluating ReGuS in robot tasks with continuous state and action spaces.

return to the locked door via skill3 (𝑑𝑜𝑜𝑟 ) to open it. For a fair comparison, for DRL-abs, we also

add learned neural policies for simpler tasks as a macro action that can be used by neural policies

when learning for more complex tasks. DRL-abs consistently receives nearly zero rewards beyond

the second environment. Using curriculum synthesis, ReGuS achieves the maximum 1.0 reward

on all the 7 environments evaluated over 1000 random seeds. Without curriculum synthesis, ReGuS

failed to solve the more complex tasks as DRL-abs. The synthesized programs feature multiple

loops with nested conditionals making them infeasible to be found by EnumS or EnumR.

5.3 RQ3: Robotics Tasks in Stochastic Continuous State Spaces
We evaluate ReGuS using the following continuous, long horizon robotics tasks with sparse rewards.

Highway Driving.We consider the task of a self-driving car navigating a multilane highway

depicted in Fig. 21 (left) adapted from [30]. In the DSL, we define a state abstraction predicate

frontIsClear() to check if the predicted time-to-collision of observed vehicles on the same lane

as the ego-vehicle is no less than a threshold based on their current speed and position. Additionally,

we have leftIsClear() to check the clearance on the left lane assuming the ego-vehicle were

to drive on the left lane. The rightIsClear() predicate is defined in the same way. The skills

in our DSL lane_left(), lane_right(), faster() and slower() are borrowed from [30] which

add a layer of speed and steering controllers on top of the continuous low-level control so that the

ego-vehicle can follow the target lane at a desired speed. The environment is stochastic as the
other vehicles’ speeds and lane positions are uncertain e.g. at each timestep the front vehicle may

maintain its speed or decelerate. The reward is 1.0 at each timestep only if the ego-car drives on

the rightmost lane with the highest permissible speed while avoiding collisions. The horizon is 50.

Fetch Environments. The Fetch-Pick & Place task is for a manipulator to pick up a block and

place it in a target position in mid-air as depicted in Fig. 21 (middle). The robot used is a 7-DoF

Fetch Mobile Manipulator with a two-fingered parallel gripper. The environment is stochastic as
the block is slippery and prone to falling from the gripper once grasped with 20% probability every

step. We consider state abstraction predicates Closing (indicates if the gripper is closed), NearObj
(indicates if the gripper is close to the block), HoldingObj (indicates if the gripper is holding the
block), AboveObj (indicates if the gripper is above the block), and ObjAt (indicates if the block

is in the goal region 𝑔 ∈ R3). These predicates are borrowed from [27]. The continuous action

space is R4, where the first 3 components encode the target gripper position and the last one is the

target gripper width. The skills in our DSL are defined to include openGripp(), closeGripp(),
moveUp(), moveDown(), move(𝑔) that moves the gripper to a goal region 𝑔. The reward function

is 1.0 if the block is moved to the goal region and 0 otherwise. The Fetch-Hook task is similar.

However, the robot’s gripper cannot directly reach the object and must utilize a hook to manipulate

the object effectively. The table surface is scattered with random "bumps" that act as rigid obstacles,

making the environment stochastic.
Ant Navigation. In the 4 maze environments depicted in Fig. 21 (right), a MuJoCo quadruped

ant [47] is tasked to navigate to a goal position (red sphere). The objective is to synthesize a

single program capable of reaching the goal regions in all 4 mazes. We adopt the same setting

used in [16]: the ant receives range sensor readings about nearby obstacles as well as the goal.
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(a) Highway Driving (b) Fetch-Pick&Place (c) Fetch-Hook (d) Ant Navigation

Fig. 22. Comparing the mean performance of ReGuS against the baselines over the robot learning tasks in
Fig. 21 for 5 trails. The x-axis denotes the number of robot-environment interactions (simulation steps). The
y-axis records the rewards of learned controllers (left and middle) or the numbers of solved tasks (right). Each
program/neural policy is evaluated over 1000 trajectories.

The DSL is equipped with the state abstraction predicates and skills in Equation 5. The predi-

cates frontIsClear(), leftIsClear(), rightIsClear(), and present(goal) use range sensory
inputs for object detection. The skill module move can navigate the ant along the four cardinal

directions by invoking four neural primitive skills UP, DOWN, LEFT and RIGHT pretrained by a deep

RL algorithm SAC [22]. The other two skills turnLeft and turnRight update the cardinal direction
of the ant based on which move invokes one of the four neural primitive skills correspondingly.

Detailed descriptions of the predicates and skill modules are included in the extended version [12].

A positive reward is given only when the robot reaches the goal region within 800 timesteps.

Fig. 22 (left) compares ReGuS and the baselines on the Highway autonomous driving environment.

As there is no goal in this environment, we show the rewards accumulated at each timestep. ReGuS

learns an interpretable program that ensures safe avoidance, facilitates lane changes to the right, and

maintains the highest permissible speed whenever possible. ReGuS ultimately surpasses the DRL

baseline, which becomes stuck in a local minimum. DRL-abs tends to be overly cautious, always

slowing down Fig. 22 (middle) shows that ReGuS generalizes well to the stochastic Pick&Place

environments. Although the block is prone to falling off, the learned program iteratively picks it

up in a loop to ensure eventual goal achievement. Curriculum synthesis further improves the data

efficiency of ReGuS for the Hook environment. The synthesized program can utilize the Pick&Place

skill to grasp the hook and align it with the block for movement toward the goal, enabling fast

learning. In Fig. 22 (right), a task in Ant navigation is considered solved if the agent can achieve

above 95% success rate for goal achievement over 1000 trajectories. The program synthesized for

the Ant-U maze includes the behavior of turning left when facing a wall. When executed in the

Ant-S environment, ReGuS adds to it a conditional statement, directing the ant to explore its right

side when its right is clear. The program generalizes to the remaining two environments. The DRL

and DRL-abs baselines struggle with the long-horizon, procedural Fetch and Ant Navigation tasks.

Local Reward Optimums. We further investigate whether ReGuS is subject to the risk of

converging to suboptimal programs. Principally, ReGuS handles this issue by using UCT (Upper

Confidence Bound 1 [28]) to balance sketch exploitation and sketch exploration in the high-level

sketch generation phase (Sec. 4.4) and considering program structure cost in the low-level sketch

completion phase (Sec. 4.3). For example, for the Fetch-Pick&Place task in Fig. 21 (middle), a

synthesized program may attempt to move the gripper directly to the block to grab it. While this

approach may occasionally succeed in getting a reward early, it is suboptimal because it could

accidentally push the block off the table. Expanding partial programs excessively based on this

behavior can result in increased structural complexity that outweighs the task reward. By leveraging

structure costs, ReGuS navigates away from this local optima by synthesizing another program

moving the gripper above the block before descending to grasp it. Although this behavior requires
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more search steps to receive a positive reward, it can eventually lead to success. This phenomenon

is evident in the fluctuations observed in the reward curve during learning for this task, as depicted

in Fig. 22(b) (a similar trend can be observed for the other environments as well).

Defining State-Abstraction Predicates. To study the difficulty of defining predicates for

continuous state environments, we firstly perform an ablation study to examine how the number

of state abstraction predicates affects reward performance. In the Fetch-Pick&Place environment

shown in Fig. 21 (middle), we iteratively eliminate predicates from the 5 perception-based predicates

defined for this task and then rerun ReGuS. Our ablation study reveals that even when one of

the three predicates—Closing, NearObj, or HoldingObj—is removed, ReGuS can still produce a

correct program with full reward. However, ReGuS fails to solve this task when more than one

predicate is removed, or when the other predicates are removed. We also investigate the influence

of the quality of state abstraction predicates in the highway environment shown in Fig. 21 (left).

The state abstraction predicates for this environment e.g. frontIsClear() assess if the predicted

time-to-collision of observed vehicles is beyond a certain threshold. Our ablation study indicates

that setting the threshold to 2 or 3 seconds yields programs with comparable rewards. However,

setting the threshold to 4 leads to a program with a much lower reward, as the learned controller

exhibited an overly cautious behavior, causing the ego vehicle to slow down prematurely.

We provided the synthesized programs for each robot task in our experiments in the extended

version [12]. It also includes further comparisons between ReGuS and state-of-the-art deep RL

algorithms and programmatic RL baselines. In the extended version, we demonstrated ReGuS’s

unique ability to generalize effectively to larger problem instances, and presented an ablation study

on the hyperparameters of ReGuS, along with program execution trajectories on selected tasks.

6 LIMITATIONS
While ReGuS has demonstrated superior performance compared to state-of-the-art RL algorithms

and standard program synthesis baselines in the robot-control tasks discussed in Sec. 5, our experi-

ments have also revealed several limitations that require further improvement. The main limitation

of ReGuS is its dependence on user-defined state abstraction predicates to construct the domain-

specific language (DSL) used for synthesis. Our experiments demonstrate that specifying state

abstraction predicates to describe spatial relationships among environmental objects is an effective

strategy overall for robot-control tasks. The ablation study in Sec. 5.3 shows that determining

suitable (constant) thresholds within these predicates for continuous environments may require

domain expertise but can be adjusted as parameters by iterating with ReGuS.

ReGuS relies on curriculum synthesis to solve extremely sparse-reward tasks characterized by

multiple stages, where a positive reward is given only upon the task’s full completion. As shown in

the experiment detailed in Sec. 5.2, this requires the presence of a series of related procedural tasks

to form a reasonable curriculum. Exploring methods to automatically generate a curriculum for a

single complex task is an interesting direction for future research.

Another limitation is that ReGuS has only been evaluated in the domain of robot navigation and

manipulation. We anticipate that ReGuS can be generalized to other domains, such as data-structure

manipulations. For example, with a proper DSL for heap manipulation, a ReGuS agent could move

along a linked list as long as there are elements present or turn left to traverse the left branch of a

tree to pick up specific data structure elements (filtering). We leave this extension for future work.

7 RELATEDWORK
Reward-guided Program Synthesis. There exist synthesis algorithms that design dense rewards

over their own solutions to guide search directions. Probe [2] and Syntia [4] evaluate candidate

programs based on the inputs from input-output examples and compare the output similarity to
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generate rich reward information. Chen et al. [9] incorporate feedback from a deduction engine

in its reward function, which is based on the feasibility of partial programs concerning a set of

input-output examples. Faery [10] uses Monte Carlo estimation to sample user queries for obtaining

additional input-output examples. In sparse-reward scenarios, attempting to synthesize complete

programs (with complex control flow structures) using Monte Carlo reward estimation becomes

challenging as the likelihood of finding a complete program with a nonzero averaged reward

is low, making it difficult to guide the search algorithm effectively. ReGuS is designed to tackle

sparse-reward tasks through its two-staged synthesis approach. The sketch generator leverages the

reward feedback from the sketch completer to guide its sketch generation process.

Quantitative Synthesis. The goal of quantitative synthesis is to find a program that meets a

given specification, like a set of examples or a logical formula, while also optimizing a quantitative

cost function, such as minimizing the number of instructions in the program or its performance

overhead. Cost functions require white-box access to whole programs [7] and must be in decidable

theory [5]. However, agents for robot learning interact with complex dynamics environments,

wherein the state-transitionmodels may be black boxes. Moreover, quantitative synthesis techniques

are rooted in programming by example and counterexample-guided inductive synthesis [21, 24].

ReGuS conducts synthesis without the dependency on examples.

Execution-guided Program Synthesis. There exists prior work in program synthesis that

incorporates execution traces to guide program generation. Ellis et al. [17] expose program execution

results encountered during a bottom-up search to a neural predictor. The predicted production rule

probabilities are then used to prioritize more likely programs. Chen et al. [8] leverage intermediate

values of partial programs that are consumed by a neural encoder-decoder model to guide top-down

search. ReGuS differs in the sense that it generalizes states encountered in execution to pre- and

postconditions to enable on-demand conditional statement synthesis.

On-demand Synthesis of Conditional Statements. ReGuS’s conditional statement synthesis

strategy is related to the lazy predicate synthesis algorithms described in [39, 52]. These algorithms

learn a predicate𝜓 ∗ to strengthen an existing abstraction 𝜙 such that the following properties hold

𝑝+ ⇒ (𝜙 ∧𝜓 ∗) ⇒ 𝑝− where 𝑝+ and 𝑝− are in general pre- and post-conditions or abstractions of

input-output examples. However, ReGuS does not assume it knows the specification of a robot

task nor does it assume access to a provided set of task execution examples. We justify this design

choice in Sec. 2. Compared to [e,f], ReGuS is more suitable when only rewards are used to specify

tasks and there is no example or formal specification.

Generalized Planning. ReGuS shares conceptual similarities with generalized planning tech-

niques such as [45, 46], which aim to derive plans with loops to solve problem instances of un-

bounded sizes. However, planning techniques require the state transition model for each robot

action within an abstracted state space to be provided. Similar requirements are imposed for

component-based synthesis techniques with user-defined predicates, as seen in [9, 19]. In contrast,

ReGuS automatically generates the pre- and postconditions of each task-agnostic robot skill within

the abstracted state space of user-defined predicates. This model-free approach makes ReGuS better

suited for application domains such as stochastic robot environments, where manually specifying

each robot skill is challenging and requires extensive domain expertise.

8 CONCLUSION
We present ReGuS, reward-guided synthesis, to address the exploration challenges in deep rein-

forcement learning for robot environments with sparse rewards. Extensive experiment results

demonstrate that by decomposed search space for loops, on-demand synthesis of conditional

statements, and curriculum synthesis of robot skills as reusable procedures, ReGuS effectively

compresses the exploration space for long-horizon, multi-stage, and procedural robot tasks.
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