
Differentiable Synthesis of Program Architectures

Guofeng Cui
Department of Computer Science

Rutgers University
gc669@cs.rutgers.edu

He Zhu
Department of Computer Science

Rutgers University
hz375@cs.rutgers.edu

Abstract

Differentiable programs have recently attracted much interest due to their inter-
pretability, compositionality, and their efficiency to leverage differentiable training.
However, synthesizing differentiable programs requires optimizing over a combina-
torial, rapidly exploded space of program architectures. Despite the development
of effective pruning heuristics, previous works essentially enumerate the discrete
search space of program architectures, which is inefficient. We propose to encode
program architecture search as learning the probability distribution over all possible
program derivations induced by a context-free grammar. This allows the search
algorithm to efficiently prune away unlikely program derivations to synthesize
optimal program architectures. To this end, an efficient gradient-descent based
method is developed to conduct program architecture search in a continuous relax-
ation of the discrete space of grammar rules. Experiment results on four sequence
classification tasks demonstrate that our program synthesizer excels in discovering
program architectures that lead to differentiable programs with higher F1 scores,
while being more efficient than state-of-the-art program synthesis methods.

1 Introduction

Program synthesis has recently emerged as an effective approach to address tasks in several fields
where deep learning is applied traditionally. A synthesized program in a domain-specific language
(DSL) provides a powerful abstraction for summarizing discovered knowledge from data and offers
greater interpretability and transferability across tasks than a deep neural network model, while
achieving competitive task performance [1–4].

A differentiable program encourages interpretability by using structured symbolic primitives to
compose a set of differentiable modules with trainable parameters in its program architecture. These
parameters can be efficiently learned with respect to a differentiable loss function over the program’s
outputs. However, synthesizing a reasonable program architecture remains challenging because
the architecture search space is discrete and combinatorial. Various enumeration strategies have
been developed to explore the program architecture space, including greedy enumeration [1, 2],
evolutionary search [5], and Monte Carlo sampling [6]. To prioritize highly likely top-down search
directions in the combinatorial architecture space, NEAR [7] uses neural networks to approximate
missing expressions in a partial program whose F1 score serves as an admissible heuristic to effective
graph search algorithms such as A∗ [8]. However, since the discrete program architecture search
space is intractably large, enumeration-based search strategies are inefficient in general.

We propose to encode program architecture search as learning the probability distribution over all
possible program architecture derivations induced by a context-free DSL grammar. This problem
bears similarities with searching the structure of graphical models [9] and neural architecture search.
For example, to search a high-quality neural network model, DARTS [10] uses a composition of
softmaxes over all possible candidate operations between a fixed set of neural network nodes to relax
the discrete search space of neural architectures. However, applying this method to program synthesis

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

is challenging because the program architecture search space is much richer [7]. Firstly, different sets
of operations take different input and output types and may only be available at different points of a
program. Secondly, there is no fixed bound on the number of expressions in a program architecture.

To address the aforementioned challenges, we learn the probability distribution of program archi-
tectures in a continuous relaxation of the search space of DSL grammar rules. We conduct program
architecture search in a program derivation graph, in which nodes encode architectures with missing
expressions, and paths encode top-down program derivations. For each partial architecture f on a
graph node, we relax the categorical choice of production rules for expanding a missing expression in
f to a softmax over all possible production rules with trainable weights. A program derivation graph
essentially expresses all possible program derivations under a context-free grammar up to a certain
depth bound (on the height of program abstract syntax trees), which can be progressively increased
during search to balance accuracy and architecture complexity. We encode a program derivation
graph itself as a differentiable program whose output is weighted by the outputs of all the programs
involved. We seek to optimize program architecture weights with respect to an accuracy loss function
defined over the encoded program’s output. The learned weights allow our synthesis algorithm to
efficiently prune away search directions to unlikely program derivations to discover optimal pro-
grams. Compared with enumeration-based synthesis strategies, differentiable program synthesis in
the relaxed architecture space is easier and more efficient with gradient-based optimization.

One major challenge of differentiable program architecture synthesis is that a program derivation
graph involves an exponential number of programs and a huge set of trainable variables including
architecture weights and program parameters. To curb the large program derivation search space, we
introduce node sharing in program derivation graphs and progressive graph unfolding. Node sharing
allows two partial architectures to share the same child nodes if the missing expressions in the two
architectures can be expanded using the same grammar rules. Progressive graph unfolding allows
the synthesis algorithm to construct a program derivation graph on the fly focusing on higher-quality
program derivations than all the rest. These optimization strategies significantly reduce the program
architecture search space, scaling differentiable program synthesis to real-world classification tasks.
We evaluate our synthesis algorithm in the context of learning classifiers for sequence classification
applications. We demonstrate that our algorithm substantially outperforms state-of-the-art methods for
differentiable program synthesis, and can learn programmatic classifiers that are highly interpretable
and are comparable to neural network models in terms of accuracy and F1-scores.

As a summary, this paper makes three contributions. Firstly, we encode program synthesis as
learning the probability distribution of program architectures in a continuous relaxation of the
discrete space defined by programming language grammar rules, enabling differentiable program
architecture search. Secondly, we instantiate differentiable program architecture synthesis with
effective optimization strategies including node sharing and progressive graph unfolding, scaling it to
real-world classification tasks. Lastly, we present state-of-the-art results in learning programmatic
classifiers for four sequence classification applications.

2 Problem Formulation

A program in a domain-specific language (DSL) is a pair (α, θ), where α is a discrete program
architecture and θ is a vector of real-valued parameters of the program. Given a specification over
the intended input-output behavior of an unknown program, program synthesis aims to discover the
program’s architecture α and optimize the program parameters θ.

In this paper, we focus on learning programmatic classifiers for sequence classification tasks [11].
We note that the proposed synthesis technique is applicable to learning any differentiable programs.

Program Architecture Synthesis. A program architecture α is typically synthesized based on a
context-free grammar [12]. Such a grammar consists of a set of production rules αk → {σj}Jj=0 over
terminal symbols Σ and nonterminal symbols Y where αk ∈ Y and σj ∈ Σ ∪ Y . As an example,
consider the context-free grammar of a DSL for sequence classification depicted in the standard
Backus-Naur form [13] in Fig. 1, adapted from [7]. A terminal in this grammar is a symbol that
can appear in a program’s code, e.g. x and the map function symbol, while a nonterminal stands
for a missing expression (or subexpression), e.g. α2 and α3. Any program in the DSL operates
over a real vector or a sequence of real vectors x. It may use constants c, arithmetic operations
Add and Multiply, and an If-Then-Else branching construct ITE. To avoid discontinuities for

2

α ::= x | c | Add α1 α2 |Multiply α1 α2 | ITE α1 ≥ 0 α2 α3 | FS,θ(x) | map (fun x1.α1) x |
mapprefix (fun x1.α1) x | fold (fun x1.α1) c x | SlideWindowAvg (fun x1.α1) x

Figure 1: Context-free DSL Grammar for Sequence Classification (adapted from [7]).

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

𝐴𝑑𝑑: 𝛼!
",$

𝐼𝑇𝐸: 𝛼!
","

𝑀𝑎𝑝: ∅

𝐹𝑜𝑙𝑑 𝐴𝑣𝑔 𝑥

𝑾

𝑾

Depth 0

Depth 1

Depth 2

Depth 3

Depth 0

Depth 1

… … … … Depth 2

𝑾

0.45 0.2 0.35𝐴𝑑𝑑: 𝛼"
",$

𝐴𝑑𝑑 𝑀𝑢𝑙 𝑥

𝑾

0

0

1

2 3

4 5

𝐴𝑑𝑑
𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

𝐴𝑑𝑑
𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

𝐼𝑇𝐸
𝛼"
&,"𝛼!

&,"𝛼%
&,"

𝑀𝑢𝑙
𝛼"
&,! 𝛼!

&,!
𝐴𝑑𝑑

𝛼"
&,% 𝛼!

&,%
𝐼𝑇𝐸

𝛼"
',"𝛼!

',"𝛼%
',"

𝑀𝑢𝑙
𝛼"
',! 𝛼!

',!
𝑥
∅

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

1
𝐴𝑑𝑑

𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

2
𝐴𝑑𝑑

𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅ 3

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

Figure 2: Program Derivation Graph of the grammar in Fig. 1.

differentiability, we interpret it in terms of a smooth approximation: JITE(α1 ≥ 0, α2, α3)K(x) =
σ(Jα1K(x)) · Jα2K(x) + (1 − σ(Jα1K(x)) · Jα3K(x) where σ is the sigmoid function. A program
may invoke a customized library of differentiable, parameterized functions. In our context, these
functions are in the shape FS,θ(x) that extract a vector consisting of a predefined subset S of the
dimensions of an input x and pass the extracted vector through a linear function with trainable
parameters θ. A program may also use a set of higher-order combinators to recurse over sequences
including the standard map and fold combinators. The higher-order combinators take as input an
anonymous function fun x.e(x) that evaluates an expression e(x) over the input x. For a sequence x,
the mapprefix higher-order combinator returns a sequence f(x[1 : 1]), f(x[1 : 2]), . . . , f(x[1 : n]),
where x[1 : i] is the i-th prefix of x. The SlideWindowAvg function computes the average of a
sequence over a moving window of vectors.

We define the complexity of a program architecture α. Let each grammar rule r have a non-negative
real-valued cost c(r). The structural cost c(α) is the sum of the costs of the multi-set of rules used to
create α. Intuitively, program architectures with lower structural cost are more interpretable. In the
context of this paper, program synthesis aims to learn a simple program (in terms of structure cost)
that satisfies some specifications over program input-output behaviors. In this paper, we set c(r) = 1
for any production rule r.

Program Synthesis Specifications. In a sequence classification task, a set of feature sequences
{ik}Kk=1 are taken as input and we expect to classify ik into a certain category ok. Each ik is a
sequence of observations. Each observation captures features extracted at a frame as a 1-dimensional
real-valued vector. We aim to synthesize a program P (·; α, θ) as a classifier with high accuracy and
low architecture cost. Our program synthesis goal is formalized as follows:

arg min
θ,α

Eik,ok∼D[`
(
P (ik; α, θ), ok

)
] + c(α) (1)

where D(ik, ok) is an unknown distribution over input sequences ik and labels ok. The first term of
Equation (1) defines some prediction error loss ` of a program P (·) for a classification task over P ’s
predicted labels and the ground truth labels. The second term enforces program synthesis to learn an
architecturally simple classifier.

3 Differentiable Program Architecture Synthesis

We formulate program architecture derivation as a form of top-down graph traversal. Given the
context-free grammar G of a DSL, an architecture derivation starts with the initial nonterminal (i.e. the
empty architecture), then applies the production rules in G to produce a series of partial architectures
which consist in expressions made from one or more nonterminals and zero or more terminals, and
terminates when a complete architecture that does not include any nonterminals is derived.

3

Formally, program architecture synthesis with respect to a context-free grammar G is performed
over a directed acyclic program derivation graph G = {V,E} where V and E indicate graph nodes
and edges. Fig. 2 depicts a program derivation graph for the sequence classification grammar in
Fig. 1. A node u ∈ V is a set of partial or complete program architectures permissible by G. An
edge (u, u′) ∈ E exists if one can obtain the architectures in u′ by expanding a nonterminal of an
architecture in u following some production rules of G. For simplicity, Fig. 2 only shows three partial
or complete architectures in any node of the program derivation graph. In the graph node at depth
1, we expand the initial nonterminal α0,0

1 to the Add, ITE and Map functions (each with missing
expressions) using the grammar rules in Fig. 1. Notice that the edge direction in a program derivation
graph indicates search order. However, program dataflow through each edge (u, u′) is in the opposite
direction. The output of u′ is calculated first and then passed as input to u.

The main challenge of program architecture synthesis is that the search space embedded in a program
derivation graph is discrete and combinatorial. Enumeration-based synthesis strategies are inefficient
in general because of the intractable search space. Instead, we aim to learn the probability distribution
of program architectures within a program derivation graph in a continuous relaxation of the search
space. Specifically, to expand a nonterminal of a partial program architecture, we relax the categorical
choice of production rules in a context-free grammar into a softmax over all possible production rules
with trainable weights. For example, in Fig. 2, if we expand the initial nonterminal α0,0

1 to a partial
architecture Add α1,0

1 α1,0
2 on node 1, we have several choices to further expand the architecture’s

first nonterminal α1,0
1 , weighted by the probability matrix w (obtained after softmax) drawn in Fig. 2.

Based on w, the synthesizer chooses to expand α1,0
1 to Add α2,0

1 α2,0
2 on node 2. Our main idea to

learn architecture weights is to encode a program derivation graph itself as a differentiable program
Tw,θ whose output is weighted by the outputs of all programs included in Tw,θ, where w represents
architecture weights and θ includes program parameters of all the mixed programs in the graph. The
parameters w and θ can be jointly optimized with respect to a differentiable loss function ` over
program outputs via bi-level optimization. Similar to DARTS [10], we train θ and w on a parameter
training dataset Dθ and an architecture validation dataset Dw respectively until convergence:

θ′ = θ −∇θEik,ok∼Dθ`
(
Tw,θ(ik), ok

)
w′ = w −∇wEik,ok∼Dw`

(
Tw,θ′(ik), ok

) (2)

However, a program derivation graph includes an exponential number of programs. Therefore, it
involves a huge set of trainable variables including program architecture weights w and unknown
program parameters θ. To curb the large program derivation search space, we introduce node sharing
(Sec. 3.1) and progressive graph unfolding (Sec. 3.2).

3.1 Node Sharing

Intuitively, node sharing in a program derivation graph allows two partial architectures to share
the same child nodes if the nonterminals in the two architectures can be expanded using the same
grammar production rules. Fig. 3 depicts the compressed program derivation graph for the sequence
classification grammar in Fig. 1. At depth 1, three partial architectures Add α1,0

1 α1,0
2 , ITE α1,1

1 ≥
0 α1,1

2 α1,1
3 , and Map (fun x1.α1,2

1) are expanded from the initial nonterminal α0,0
1 . Because only

one of the three partial architectures would be used to derive the final synthesized program, we allow
the nonterminals α1,0

2 , the second parameter of Add, and α1,1
2 , the second parameters of ITE, to

share the same child node 3, weighted by the probability matrix w drawn in Fig. 3. Importantly, node
sharing takes function arities and types into account. The matrix w has 0 probability for the Map
partial architecture because unlike Add and ITE it does not contain a second parameter.

Formally, in a program derivation graph, let Ku be the number of program architectures on node
u. Denote fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
as the k-th (partial) architecture on u where η(fuk) is the number

of nonterminals contained in fuk and αu,ki is the i-th nonterminal of fuk . For the grammar of Fig. 1,
essentially each fuk is a function application with missing argument expressions αu,ki , 1 ≤ i ≤ η(fuk),
and η(fuk) is the arity of the function. Assume that u′ is the i-th child of u from left to right in the
program derivation graph. The weight we of the edge e = (u, u′) is of the shape RKu×Ku′ where the
matrix rows refer to the partial architectures on u and the matrix columns refer to architectures on u′.
We have we[(k, k′)] proportional to the probability of expanding the i-th nonterminal of fuk to fu

′

k′

4

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

𝐴𝑑𝑑: 𝛼!
",$

𝐼𝑇𝐸: 𝛼!
","

𝑀𝑎𝑝: ∅

𝐹𝑜𝑙𝑑 𝐴𝑣𝑔 𝑥

𝑾

𝑾

Depth 0

Depth 1

Depth 2

Depth 3

Depth 0

Depth 1

… … … … Depth 2

𝑾

0.45 0.2 0.35𝐴𝑑𝑑: 𝛼"
",$

𝐴𝑑𝑑 𝑀𝑢𝑙 𝑥

𝑾

0

0

1

2 3

4 5

𝐴𝑑𝑑
𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

𝐴𝑑𝑑
𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"

𝐴𝑣𝑔 𝑥
∅

𝐼𝑇𝐸
𝛼"
&,"𝛼!

&,"𝛼%
&,"

𝑀𝑢𝑙
𝛼"
&,! 𝛼!

&,!
𝐴𝑑𝑑

𝛼"
&,% 𝛼!

&,%
𝐼𝑇𝐸

𝛼"
',"𝛼!

',"𝛼%
',"

𝑀𝑢𝑙
𝛼"
',! 𝛼!

',!
𝑥
∅

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

𝑆𝑡𝑎𝑟𝑡
𝛼"
$,$

1
𝐴𝑑𝑑

𝛼"
",$ 𝛼!

",$
𝐼𝑇𝐸

𝛼"
"," 𝛼!

","𝛼%
","

𝑀𝑎𝑝
𝛼"
",!

2
𝐴𝑑𝑑

𝛼"
!,$ 𝛼!

!,$
𝑀𝑢𝑙

𝛼"
!," 𝛼!

!,"
𝑥
∅ 3

𝐹𝑜𝑙𝑑
𝛼"
%,$ 𝛼"

%,"
𝐴𝑣𝑔 𝑥

∅

Figure 3: Node Sharing on Program Derivation Graphs.

(obtained after softmax), e.g. the w matrix drawn in Fig. 3. To make the architecture search space
continuous, we relax the categorical choice of expanding a particular nonterminal αu,ki to a softmax
over all possible grammar production rules for αu,ki in the program derivation graph:

Jαu,ki K(x) =

Ku′∑
k′=0

exp(we[(k, k
′)])∑Ku′

j=0 exp(we[(k, j)])
· Jfu

′

k′
(
αu
′,k′

1 , . . . , αu
′,k′

η(fu
′

k′)

)
K(x)

where u′ is the i-th child of u and e = (u, u′)

(3)

Complexity. Let D be the depth of a program derivation graph for a context-free grammar, Kmax be
the number of productions rules, and ηmax be the maximum number of nonterminals in any rules of
the grammar. With node sharing, we reduce the space complexity of the program derivation graph
from O([Kmax · ηmax]D+1) to O([ηmax]D+1). In a program synthesis task, Kmax is typically much
larger than ηmax. Without compression, a program derivation graph with a large Kmax hardly fits
GPU memory.

3.2 Progressive Graph Unfolding

Node sharing significantly restricts the width of a program derivation graph. However, a derivation
graph still grows exponentially with its depth, which limits the scalability of differentiable architecture
search. To address this problem, we propose an on-the-fly approach that unfolds program derivation
graphs progressively and prunes away unlikely candidate architectures at the end of each iteration
based on their weights. Fig. 4 depicts the progressive procedure of derivation graph unfolding.

At the initial iteration, the program derivation graph is shallow as it only contains architectures up
to depth ds. We set ds = 2 in Fig. 4. For any partial program architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
on any leaf node u of the depth-bounded graph, our algorithm substitutes neural networks for the
nonterminals αu,ki to approximate the missing expressions. These networks are type-consistent.
For example, a recurrent neural network is used to replace a missing expression whose inputs are
supposed to be sequences. For a program derivation graph as such, the unknown program parameters
θ come from both the parameterized functions and the neural modules. Our synthesis algorithm
optimizes the architecture weights and the unknown program parameters using Equation 2.

In the next iteration, on each graph node, our synthesis algorithm retains top-N program architectures
as children for each partial architecture on the node’s parent, which are defined to be those assigned
with higher weights on the node’s incoming edge in the previous iteration. We set N = 2 in the
example of Fig. 4. After top-N preservation on each node, our synthesis algorithm increases the
depth of the program derivation graph by expanding the nonterminals (that were replaced with
neural modules in the previous iteration) ds depths deeper. Suitable neural networks are leveraged to
substitute any new nonterminals at depth 2ds + 1. Our algorithm again jointly optimizes architecture
weights and unknown program parameters and performs top-N preservation on each node based on
learned architecture weights, as depicted in Fig. 4. Such a process iterates until the unfolded program

5

Top-2 Sel.
0

∅

Extend

Train𝑤/𝜃

Top-2 Sel.Extend

Train𝑤/𝜃

…

𝑾′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

𝑾′

0.55 0.45 0
0.67 0 0.33

Search

w. train

0

1

3

5

6 7

…
𝑾

0.3 0.36 ⋯ 0.02 0

1

NN

2 …
…
𝑾

0

1

NN

2

0

1

3

5 …
6 7… …

𝑾′

0

1

3

5

6 7

𝑾′

Top-2 Preserve
0

∅

Unfold

Train𝑤/𝜃

Top-2 PreserveUnfold

Train𝑤/𝜃

…

𝑾′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

𝑾′

0.55 0.45 0
0.67 0 0.33

…
𝑾

0.3 0.36 ⋯ 0.02 0

1

NN

3 …
…
𝑾

2 …
NN

0

1

NN

3

NN

2

0

1

3

4 …
5 6… …

𝑾′

2

0

1

3

4

5 6

𝑾′

2
Search

0

1

3

4

5 6

2

Figure 4: Differentiable program architecture synthesis with progressive graph unfolding.

derivation graph contains no nonterminals or the maximum search depth is reached. Our differentiable
program architecture synthesis method is outlined in (the first while loop of) Algorithm 1.

3.3 Searching Optimal Programs

Algorithm 1: Program Archit. Synthesis
Input :Grammar G, Graph expansion

depth ds, Top-N parameter
Output :Synthesized Program P
G contains only the initial nonterminal;
while maximum depth not reached do

Unfold G depth ds deeper w.r.t. G;
Optimize w and θ in G w.rt. Eq. 2;
Top-N preservation on G’s nodes;

Q := [G];
while Q 6= ∅ do

q := arg minq∈Q f(q);
Q := Q \ {q};
if q is a well-typed program then

return q;
u is the top-left most node in q with
more than one architecture choice;

for each partial archit. fuk on u do
q′ := q[u/fuk];
Compute g(q′), h(q′), s(q′);
Q := Q ∪ {q′};

Once we have an optimized program derivation graph
G, due to the top-N preservation strategy, each node
retains a small number of partial architectures. From
G, we could greedily obtain a discrete program ar-
chitecture top-down by replacing each graph node
containing mixed partial architectures with the most
likely partial architecture based on learned architec-
ture weights. However, the performance estimation
ranked by architecture weights in a program deriva-
tion graph can be inaccurate due to the co-adaption
among architectures via node sharing. Recent work
also discovers that relaxed architecture search meth-
ods tend to overfit to certain functions that lead to
more rapid gradient descent than others [14–17] and
thus produce unsatisfying performance.

To overcome this potential disadvantage of differen-
tiable architecture search, our algorithm introduces a
search procedure as depicted in Fig. 4. The core idea
is that while one super program derivation graph may
not be able to model the entire search space accu-
rately, multiple sub program derivation graphs can be
used to effectively address the limitation by having
each sub graph modeling one part of the search space.

In the search, Algorithm 1 maintains a queue Q of
program derivation graphs sorted by their quality that
is initialized to [G]. Our algorithm measures the
quality of a program by both its task performance and structure cost. The algorithm dequeues one
graph q from Q and extracts the top-most and left-most node u of q that still contains more than one
partial architecture for search. As u co-adapts multiple architectures, we separate the entire search
space into disjoint partitions by picking each available architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
from the

compound node u and assign a sub program derivation graph to model each partition. The algorithm
computes a quality score s for each option of retaining only fuk on u, denoted as q[u/fuk]:

s(q[u/fuk]) = g(q[u/fuk]) + h(q[u/fuk])

The g(q[u/fuk]) function measures the structure cost of expanding the initial nonterminal up to u
(Sec. 2) and h(q[u/fuk]) is an ε-Admissible heuristic estimate of the cost-to-go from node u [18]:

h(q[u/fuk]) = 1− F1(Tw∗,θ∗ [u/fuk], Dval) where w∗, θ∗ = arg min
w,θ

Eik,ok∼D[`
(
Tw,θ[u/fuk]), ok

)
]

where T encodes the program derivation graph q itself via Equation (3) as a differentiable program
whose output is weighted by the output of all complete programs included in q, w and θ are the sets of
architecture weights and unknown program parameters in the subgraph rooted at u in q[u/fuk]. The h
function fine-tunes these trainable variables using the training datasetD to provide informed feedback

6

on the contribution to program quality by the choice of only retaining fuk on node u, measured by the
program’s F1 score. In practice, to avoid overfitting, we use a separate validation dataset to obtain
the F1 score. After computing the quality score s, we add q[u/fuk] back to the queue Q sorted based
on s-scores. The search algorithm completes when the derivation graph with the least s-score from
Q is a well-typed program, i.e. each graph node contains only one valid architecture choice. Our
architecture selection algorithm is optimal given the admissible heuristic function h — the returned
program optimally balances program accuracy and structure complexity among all the programs
contained in G. The proof is given in Appendix A.

4 Experiments

We have implemented Algorithm 1 in a tool named dPads (domain-specific Program architecture
differentiable synthesis) [19], and evaluated it on four sequence classification datasets.

4.1 Datasets for Evaluation

We partition a dataset to training, validation, and test datasets. dPads uses the training dataset to
optimize the architecture weights and program parameters in a program derivation graph. When
searching a final program from a converged program derivation graph, we use the validation dataset to
obtain the program’s F1 score to guide the search. We use the test dataset to obtain the final accuracy
and F1 score of a program. Additionally, in training we construct two separate datasets by randomly
selecting 60% of a training dataset as Dθ to optimize program parameters θ and using the remaining
40% as Dw to train architecture weights w via Equation 2.

Crim13 Dataset. The dataset collects social behaviors of a pair of mice. We cut every 100 frames as
a trajectory. Each trajectory frame is annotated with an action by behavior experts [20]. For each
frame, a 19-dimensional feature vector is extracted including the positions and velocities of the two
mice. The goal is to synthesize a program to classify each trajectory to action sniff or no sniff. In total
we have 12404, 3077, and 2953 trajectories in the training set, validation set, and test set respectively.

Fly-vs-fly Dataset. We use the Boy-meets-boy, Aggression and Courtship datasets collected in the
fly-vs-fly environment for monitoring two fruit flies interacting with each other [21]. Each trajectory
frame is a 53-dimensional feature vector including fly position, velocity, wing movement, etc. We
subsample the dataset similar to [7], which results in 5341 train trajectories, 629 validation trajectories,
and 1050 test trajectories. We aim to synthesize a program to classify each trajectory as one of 7
actions displaying aggressive, threatening, and nonthreatening behaviors.

Basketball Dataset. The dataset tracks the movement of a basketball, 5 defensive players and 5
offensive players [22]. Each trajectory has 25 frames with each frame as a 22-dimensional feature
vector of ball and player position information. We aim to learn a program that can predict which
offensive player handles the ball or whether the ball is being passed. In total we have 18000, 2801,
and 2693 trajectories in the training set, validation set, and test set respectively.

Skeletics 152 Dataset. The dataset [23] contains 152 human pose actions as well as related YouTube
Videos subsampled from Kinetics-700 [24]. For each video frame, 25 3-D skeleton points are
collected, resulting in a 75-dimensional feature vector per frame. We extract 100 frames from each
trajectory to reduce noise. Finally, the training set contains 8721 trajectories, the validation set
contains 2184 trajectories, and the test set contains 892 trajectories. We aim to learn a program to
classify a pose trajectory as one of 10 actions.

As discussed in Sec. 2, the DSL for each dataset is equipped with a customized library of differentiable
and parameterized functions FS,θ(x). We define these functions in Appendix B. In this paper, we
focus on sequence classification benchmarks. However, dPads is a general program synthesis
algorithm and is not limited to sequence classification. In Appendix C.6, we evaluate dPads on
cryptographic circuit synthesis to demonstrate the generalizability of dPads.

4.2 Experimental Setup

To train architecture weights w and unknown program parameters θ in a differentiable program
architecture derivation graph, we use the Adam optimizer [25]. In Algorithm 1, we set N = 2
for top-N preservation and set graph expansion depth ds to 2. For evaluation, we compare dPads

7

Table 1: Experiment results on the performance of dPads compared with NEAR [7]. All results are
reported as the average of runs on five random seeds. Costs of time are set in minutes.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time

RNN .481 .851 - .964 .964 - .980 .980 - .414 .428 -
A∗-NEAR .286 .820 164.92 .828 .764 243.82 .940 .934 553.01 .312 .315 210.23

IDS-BB-NEAR .323 .834 463.36 .822 .750 465.57 .793 .768 513.33 .314 .317 848.44
dPads .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

𝑌! ∷= 𝑥 | 𝑌"
𝑌" ∷= 𝑀𝑎𝑝 𝑌" 𝑥 𝑀𝑎𝑝𝑝𝑟𝑒𝑓𝑖𝑥 𝑌" 𝑥 𝐹𝑜𝑙𝑑 𝑌" 𝑥 | 𝐼𝑇𝐸 𝑌!, 𝑌!, 𝑌! |

𝑠𝑙𝑖𝑑𝑒𝑊𝑖𝑛𝑑𝑜𝑤 𝑌! 𝐴𝑑𝑑 𝑌!, 𝑌! 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑌!, 𝑌! | 𝐹𝑒𝑎𝑡𝑢𝑟𝑒#(𝑥)

Map(
Multiply(
PositionSelectθ1(xt),DistanceSelectθ2(xt))) x

SlideWindowAvg(Add(
Multiply(LegsAffineθ1(xt), LegsAffineθ2(xt)),
Multiply(ArmsAffineθ3(xt), ArmsAffineθ4(xt)))) x

Time (min)

F1
Sc
or
e

Time (min)

F1
Sc
or
e

(a) Crim13-sniff (d) SK152-10 actions
Time (min)

(c) Bball-ballhandler

F1
Sc
or
e

Time (min)

F1
Sc
or
e

(b) Fly-vs-fly(a) Crim13 (b) SK152

MapPrefixes(
Fold(
if DistanceSelectθ1(xt)
then PositionSelectθ2(xt) else PositionSelectθ3(xt)))) x

Map(
if AccelerationSelectθ1(xt)
then if PositionSelectθ2(xt)

then PositionSelectθ3(xt) else VelocitySelectθ4(xt)
else Multiply(DistanceSelectθ5(xt), DistanceSelectθ6(xt))) x

Fold(
Add(
Add(PositionalSelectθ1(xt), WingSelectθ2(xt)),
RatioSelectθ3(xt))) x

Fold(
Add(
Add(AngularSelectθ1(xt), WingSelectθ2(xt)),
Add(RatioSelectθ3(xt), RatioSelectθ4(xt)))) x

(a) Crim13 (b) Fly-vs-fly

SlideWindowAvg(
Add(
if ArmsXYZAffineθ1(xt)
then ArmsXYZAffineθ2(xt) else ArmsXYZAffineθ3(xt),

if LegsXYZAffineθ4(xt)
then FaceXYZAffineθ5(xt) else LegsXYZAffineθ6(xt))) x

Map(
Multiply(
Add(BallXYAffineθ1(xt), OffenseXYAffineθ2(xt)),
Add(OffenseXYAffineθ3(xt), BallXYAffineθ4(xt)))) x

(c) SK152 (d) Basketball

Figure 5: Experiment results on the Crim13, Fly-vs-fly, Basketball and SK152 datasets over five
random seeds. x axis refers to costs of time recorded in minutes and y axis refers to F1 scores.

with the state-of-the-art program learning algorithms A∗-NEAR and IDS-BB-NEAR [7]. We only
report a comparison with NEAR because NEAR significantly outperforms other program learning
methods based on top-down enumeration, Monte-Carlo sampling, Monte-Carlo tree search, and
genetic algorithms [7]. All experiments were performed on Intel 2.3-GHz Xeon CPU with 16 cores,
equipped with an NVIDIA Quadro RTX 6000 GPU. More experiment settings including learning
rates and training epochs are given in Appendix C.1 and C.2.

4.3 Experiment Results

For a fair comparison with NEAR [7], for any of the four datasets, all tools search over the same
DSL. We use random seeds 0, 1000, 2000, 3000, 4000 and report average F1 scores, accuracy rates
and execution times for both methods. We also report the results achieved using a highly expressive
RNN baseline which provides a task performance upper bound on F1-scores and accuracy.

Table 1 shows the experiment results. On both the Crim13 and SK152 datasets, dPads outperforms
A∗-NEAR and IDS-BB-NEAR achieving higher F1 scores and using much less time consumption.
dPads also achieves competitive accuracy with NEAR on Crim13. On the Basketball dataset, although
dPads achieves a bit higher F1 score, the architectures synthesized by dPads and A*-NEAR are
exactly the same. However, dPads takes 70% less time to get the result. While A∗-NEAR completes
the search faster than dPads on Fly-vs-fly, the program architecture synthesized by dPads leads
to a program with a much better F1 score and higher accuracy. More quantitative analyses of the
experiment results are given in Appendix C.3.

We visualize the results of dPads and NEAR in terms of F1 scores (y axis) and running times (x axis)
on the 5 random seeds in Fig. 5 where red triangles refer to the results of dPads, and black plus marks
and rectangles refer to the results of A∗-NEAR and IDS-BB-NEAR. dPads consistently outperforms
NEAR in achieving higher F1 scores with less computation and is closer to the RNN baseline.

Although the RNN baseline provides better performance, dPads learns programs that are more
interpretable. Fig. 6 depicts the best programs synthesized by dPads on Crim13 and SK152 (among all
the 5 random seeds). The program for Crim13 has a simple architecture and achieves a high F1 score
0.475 (only 0.006 less than the RNN result). It invokes two FS,θ library functions: PositionAffine
and DistanceAffine. This program is highly human-readable: it evaluates the likelihood of "sniff" by
applying a position bias and if the distance between two mice is small they are doing a "sniff". The
programmatic classifier for SK152 achieves an F1 score 0.35 which is close to the RNN baseline. It
uses the arm and leg positions of a 3-D skeleton to complete a human-action classification. We show
more examples about the interpretability of programs learned by dPads in Appendix C.5.

8

Map(
Multiply(

PositionAffineθ1 (xt)),
DistanceAffineθ2 (xt))) x

SlideWindowAvg(Add(
Multiply(LegsAffineθ1 (xt),

LegsAffineθ2 (xt)),
Multiply(ArmsAffineθ3 (xt),

ArmsAffineθ4 (xt)))) x

Figure 6: Synthesized Programs for Crim13-sniff (left) and SK152-10 actions (right).

Table 2: Ablation study on the importance of node sharing and progressive graph unfolding as two
optimization strategies in dPads. All results are reported as the average of runs on five random seeds.
Costs of time are set in minutes. OOM represents an out-of-memory error.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
Variants of dPads F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time
dPads w/o Node Sharing .453 .800 334.93 - - > 1440 - - > 1440 .321 .322 252.81
dPads w/o Graph Unfolding .449 .818 280.67 - - OOM .848 .832 348.09 .348 .346 273.95
dPads in full .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

4.4 Ablation Studies

We introduce two more baselines to study the importance of node sharing and progressive graph
unfolding. The first baseline does not use node sharing to reduce the size of a program derivation
graph but still performs progressive graph unfolding. The second baseline directly expands a program
derivation graph to the maximum depth but still applies node sharing. We report the comparison
results over 5 random runs in Table 2. Without the two optimizations, limited by the size of GPU
memory, dPads may either time-out or encounter out-of-memory error when searching programs that
need deep structures to ensure high accuracy. This is because the size of a program derivation graph
grows exponentially large with the height of program abstract syntax trees and the number of DSL
production rules. Moreover, while being more complete, training without these two optimizations
does not necessarily produce better results even when there is no memory error or timeout. On
Basketball, dPads achieves .945 F1 score. dPads without progressive graph unfolding only obtains
.848 F1 score. We suspect this is because the program derivation graph without top-N preservation
and progressive unfolding is more difficult to train as it contains significantly more parameters.

We further investigate the effect of the top-N preservation strategy in program architecture synthesis
(Sec. 3.2) and its impact on searching optimal programs (Sec. 3.3). We set N to 1, 2, 3 respectively
and study how dPads responds to these changes. Table 3 summarizes the average results of F1 scores,
accuracy rates, time costs, and the standard deviations of these results. When N = 1, dPads extracts
final programs greedily from optimized program derivation graphs without conducting further search.
There is a significant decrease in time consumption compared with N = 2. However, dPads in
this condition achieves less F1 scores and the results have higher variances, which suggests that
architecture weights learned using only differentiable synthesis overfit to sub-optimal programs.
dPads gets similar F1 scores when setting N = 3 compared to N = 2 but consumes more time as
N = 3 incurs much larger search spaces. It even times-out on the Basketball dataset while searching
an optimal program from the converged program derivation graph. This result confirms that scaling
discrete program search to large architecture search spaces is challenging. dPads addresses this
fundamental limitation by leveraging differentiable search of program architectures to significantly
prune away unlikely search directions. Therefore, it suffices to set N = 2 in our experiments to
balance search optimality and efficiency. Additional ablation study results are given in Appendix C.4.
We discuss the limitations of dPads in Appendix D.1.

5 Related Work

Program Synthesis. Tasks in program synthesis aim to search for programs in a DSL to satisfy a
specification over program inputs and outputs. There is also a growing literature on applying deep
learning methods to guide the search over program architectures [6, 26–34]. There exist efforts
that extend this line of research to program synthesis from noisy data [1, 2, 35–37, 3, 4]. These
approaches either require a detailed hand-written program template or simply enumerate the discrete

9

Table 3: Ablation study on the value of N for the top-N preservation strategy used in dPads. All
results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

N dPads
F1 Acc. Time Std. F1 Std. Acc.

Crim13-sniff
1 .272 .627 50.85 .111 .218
2 .458 .812 147.87 .014 .008
3 .450 .811 441.12 .025 .008

Fly-vs-fly
1 .769 .716 95.36 .052 .062
2 .887 .853 348.25 .010 .006
3 .866 .818 620.48 .017 .039

Bball-ballhandler
1 .808 .785 41.14 .042 .045
2 .945 .939 174.68 .004 .004
3 - - > 1440 - -

SK152-10 actions
1 .310 .310 40.34 .020 .024
2 .337 .337 162.70 .017 .017
3 .336 .338 609.14 .011 .010

space of program architectures permitted by a DSL. Additionally, most of these literature methods
build models that are trained using corpora of synthesis problems and solutions, which are not
available in our setting. The most closest work to our technique includes [38, 7] that enumerate the
space of program architectures prioritizing search directions with feedback from machine learning
models. Specifically, Lee et al. [38] uses a probabilistic model (trained from a synthesis problem
corpus) to guide an A∗ search over discrete program syntax trees and NEAR [7] uses neural networks
to approximate missing expressions in a partial program whose F1 score serves as an admissible
heuristic to guide an A∗ search again over discrete program syntax trees. As opposed to these efforts,
our method more efficiently conducts program synthesis in a continuous relaxation of the discrete
space of language grammar rules and only searches the optimal program in a much reduced search
space after differentiable architecture synthesis for addressing the gradient bias problem [14].

Differentiable Architecture Search. Neural architecture search has attracted much interest as a
promising approach to automate deep learning tasks [39–42]. Our program architecture synthesis
algorithm is inspired by DARTS [10]. This method uses a composition of softmaxes over all possible
candidate operations between a fixed set of neural network nodes to relax the neural architecture search
space. Various methods further improve the efficiency and accuracy of differentiable architecture
search [14–17, 43, 44]. Applying this line of algorithms to program synthesis is challenging because
the space of program architectures is much richer. Different operations take different number and
types of inputs/outputs and may only be available at different points of a program. There is also
no fixed bound on the number of program expressions. By relaxing the discrete search space of
language grammar rules with node sharing and progressive unfolding of program derivation graphs,
our method addresses the aforementioned challenges. To the best of our knowledge, this is the first
approach that applies differentiable architecture search to program synthesis.

6 Conclusions

This paper presents a novel differentiable approach to program synthesis. With gradient descent,
our method learns the probability distribution of program architectures induced by the context-free
grammar of a DSL in a continuous relaxation of the discrete space of language grammar rules. This
allows the synthesis algorithm to efficiently prune away unlikely program derivations to discover
optimal program architectures. We have instantiated differentiable program architecture synthesis
with effective optimization strategies including node sharing and progressive graph unfolding, scaling
it to real-world sequence classification tasks. Experiment results demonstrate that our algorithm
substantially outperforms state-of-the-art program learning approaches.

Programmatic models in high-level DSLs are a powerful abstraction for summarizing discovered
knowledge from data in a human-interpretable way. Programmatic models incorporate inductive bias
through structured symbolic primitives in a DSL and open opportunities for programmers to influence
the semantic meaning of learned programs. However, the programming biases in a DSL may also
leave opportunities to attack on the security and fairness of a learned model. One direction for future
work is to apply formal program reasoning to enhance the trustworthiness of programmatic models.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155 and the DARPA Symbiotic Design for Cyber Physical Systems program.

References
[1] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Pro-

grammatically interpretable reinforcement learning. In International Conference on Machine Learning,
pages 5045–5054. PMLR, 2018.

[2] Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 15726–15737, 2019.

[3] Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1213–1222. PMLR, 2017.

[4] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. CoRR,
abs/1608.04428, 2016.

[5] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. HOUDINI:
lifelong learning as program synthesis. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 8701–8712, 2018.

[6] Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 9165–9174, 2019.

[7] Ameesh Shah, Eric Zhan, Jennifer J. Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learning
differentiable programs with admissible neural heuristics. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[8] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc., USA, 1984. ISBN 0201055945.

[9] Jing Xiang and Seyoung Kim. A* lasso for learning a sparse bayesian network structure for continuous
variables. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 2418–2426, 2013.

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[11] Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry Caelli, Adnan Amin,
Robert P. W. Duin, Mohamed S. Kamel, and Dick de Ridder, editors, Structural, Syntactic, and Statistical
Pattern Recognition, Joint IAPR International Workshops SSPR 2002 and SPR 2002, Windsor, Ontario,
Canada, August 6-9, 2002, Proceedings, volume 2396 of Lecture Notes in Computer Science, pages 15–30.
Springer, 2002. doi: 10.1007/3-540-70659-3_2.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages, and
computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007. ISBN 978-0-321-47617-3.

[13] Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation of
computing series. MIT Press, 1993. ISBN 978-0-262-23169-5.

11

[14] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the
depth gap between search and evaluation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI, volume 12361 of Lecture Notes in Computer
Science, pages 544–560. Springer, 2020. doi: 10.1007/978-3-030-58517-4_32.

[16] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural architecture
search. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12707–12718. PMLR, 2021.

[17] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable NAS. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[18] Larry R. Harris. The heuristic search under conditions of error. Artif. Intell., 5(3):217–234, 1974. doi:
10.1016/0004-3702(74)90014-9.

[19] Guofeng Cui and He Zhu. dPads Source Code. https://github.com/
RU-Automated-Reasoning-Group/dPads, 2021. [Online; accessed 26-Oct-2021].

[20] Xavier P Burgos-Artizzu, Piotr Dollár, Dayu Lin, David J Anderson, and Pietro Perona. Social behavior
recognition in continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1322–1329. IEEE, 2012.

[21] Eyrun Eyjolfsdottir, Steve Branson, Xavier P.Burgos-Artizzu, Eric D. Hoopfer, Jonathan Schor, David J.
Anderson, and Pietro Perona. Fly v. fly dataset, 2021. URL https://data.caltech.edu/records/
1893.

[22] Yisong Yue, Patrick Lucey, Peter Carr, Alina Bialkowski, and Iain Matthews. Learning fine-grained spatial
models for dynamic sports play prediction. In 2014 IEEE international conference on data mining, pages
670–679. IEEE, 2014.

[23] Pranay Gupta, Anirudh Thatipelli, Aditya Aggarwal, Shubh Maheshwari, Neel Trivedi, Sourav Das, and
Ravi Kiran Sarvadevabhatla. Quo vadis, skeleton action recognition ?, 2020.

[24] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700 human
action dataset. arXiv preprint arXiv:1907.06987, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama. Learning to infer
program sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 4861–4870. PMLR, 2019.

[27] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:
Learning to write programs. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[28] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In International conference on machine
learning, pages 990–998. PMLR, 2017.

[29] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[30] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning for
conditional program generation. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

12

https://github.com/RU-Automated-Reasoning-Group/dPads
https://github.com/RU-Automated-Reasoning-Group/dPads
https://data.caltech.edu/records/1893
https://data.caltech.edu/records/1893

[31] Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[32] Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage collector.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
2098–2107, 2018.

[33] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[34] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1652–1661. PMLR, 2018.

[35] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics
programs from hand-drawn images. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 6062–6071, 2018.

[36] Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. Unsupervised learning by program
synthesis. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 973–981, 2015.

[37] Brenden Lake, Ruslan Salakhutdinov, and Joshua Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350:1332–1338, 12 2015. doi: 10.1126/science.aab3050.

[38] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program synthesis
using learned probabilistic models. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pages 436–449. ACM, 2018. doi: 10.1145/3192366.3192410.

[39] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

[41] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the
European conference on computer vision (ECCV), pages 19–34, 2018.

[42] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier
architecture search. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 4780–4789. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33014780.

[43] Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. Improved differentiable architecture
search for language modeling and named entity recognition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3576–3581, 2019.

[44] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei.
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

13

A Optimality of the search procedure in Algorithm 1

In Algorithm 1, once we have an optimized program derivation graphG, due to the top-N preservation
strategy, each node retains a small number of partial architectures. Algorithm 1 maintains a queue Q
of program derivation graphs that is initialized to [G]. The algorithm dequeues one graph q from Q
and extracts the top-most and left-most node u of q that contains more than one partial architecture
for search. It enumerates each available partial architecture fuk

(
αu,k1 , . . . , αu,kη(fuk)

)
on u and computes

an s-score for each option of retaining only fuk on u, denoted as q[u/fuk]. We define

s(q[u/fuk]) = g(q[u/fuk]) + h(q[u/fuk])

The g(q[u/fuk]) function measures the structure cost of expanding the initial nonterminal up to u and
h(q[u/fuk]) is an ε-Admissible heuristic estimate of the cost-to-go from node u [7, 18] for A∗ search:

h(q[u/fuk]) =1− F1(Tw∗,θ∗ [u/fuk], Dval)

where w∗, θ∗ = arg min
w,θ

Eik,ok∼D[`
(
Tw,θ[u/fuk]), ok

)
] (4)

where T encodes the program derivation graph q itself via Equation (3) as a differentiable program
whose output is weighted by the output of all complete programs included in q, w and θ are the sets
of architecture weights and unknown program parameters in the subgraph rooted at u in q[u/fuk].
The h function fine-tunes these trainable variables using the training dataset D to provide informed
feedback on the contribution to program quality of the choice of retaining fuk on node u, measured
by F1 score. In practice, to avoid overfitting, we use a separate validation dataset Dval to obtain the
F1 score. After computing the quality score s, we add q[u/fuk] back to the queue Q sorted based on
s-scores. The search algorithm completes when the derivation graph with the least s-score from Q is
a well-typed program, i.e. each graph node contains only one valid architecture choice.

We aim to prove that our search algorithm is optimal given the admissible heuristic function h. When
multiple solutions exist in G (when the top-N parameter is greater than 1), the algorithm finds
an optimal solution. Among all the programs contained in G, the synthesized program optimally
balances program accuracy and structure complexity.

We note that our search algorithm is a variant of A∗ search by by interpreting g(q[u/fuk]) as cost-
so-far and h(q[u/fuk]) as heuristic cost-to-go. A∗ search is optimal given admissible heuristics. We
shows that under heuristics that are ε-admissible, our search algorithm returns solutions that at most
an additive constant ε away from the optimal solution.

Firstly, we prove that that our heuristic function h is ε-admissible. Let a completion of a partial
architecture q[u/fuk] be a (complete) architecture q̃[u/fuk] obtained by retaining only one partial
architecture on any node of q. The cost-to-go at q[u/fuk] is given by:

J(q[u/fuk]) = min
q̃[u/fuk]

c(q̃[u/fuk])− c(q[u/fuk]) + 1− F1(q̃[u/fuk], Dval)

where the structural cost c(q) is the sum of the costs of the grammatical rules used to construct q
excluding any nodes with more than 1 partial architectures (i.e. unexplored nodes in search).

The optimization in Equation (4) may only converge to a local minimum. However, since our
relaxation of the search space for Equation (4) includes any possible program permitted by q, there
must exist architecture weights w∗ and program parameters θ∗ such that

∀q̃[u/fuk]. 1− F1(T [u/fuk], w∗, θ∗, Dval) ≤ 1− F1(q̃[u/fuk], Dval) + ε

Thus we have:

h(q[u/fuk]) ≤ 1− F1(T [u/fuk], w∗, θ∗, Dval)

≤ min
q̃[u/fuk]

1− F1(q̃[u/fuk], Dval) + ε

≤ min
q̃[u/fuk]

c(q̃[u/fuk])− c(q[u/fuk]) + 1− F1(q̃[u/fuk], Dval) + ε

≤ J(q[u/fuk]) + ε (5)

In other words, h(q[u/fuk]) is ε-admissible as for a fixed constant ε > 0, h is an ε-admissible heuristic
function over architectures such that h(q[u/fuk]) ≤ J(q[u/fuk]) + ε for any partial architecture fuk
on u.

14

Table 4: FS,θ(x) for the Crim13 dataset.

Extract Feature Dimension
Position 0, 1, 2, 3
Distance 4
Distance Change 5
Velocity 11, 12, 13, 14
Acceleration 15, 16, 17, 18
Angle 6, 7, 10
Angle Change 8, 9

Table 5: FS,θ(x) for the Fly-vs-fly dataset.

Extract Feature Dimension
Linear 17, 25
Angular 18, 26, 27
Positional 24, 28
Ratio 22, 23
Wing 19, 20, 21

Table 6: FS,θ(x) for the Basketball dataset.

Extract Feature Dimension
Ball 0, 1
Offense 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Defence 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

ε-Optimality. Based on the ε-admissible of heuristic function h(q[u/fuk]), we prove that the variant
of A∗ search in Algorithm 1 results in a synthesized program that is at most ε away from the optimal
solution contained in the search graph. Suppose that Algorithm 1 returns a program P r that does not
have the optimal cost C∗. Then there must exist a program derivation graph q∗ in the queue Q of
Algorithm 1 that contains the architecture of the optimal program P ∗. Due to Equation 5 and the fact
that Q is sorted, the s-score of P r satisfies:

s(P r) ≤ s(q∗[u∗/f∗])

= g([q∗[u∗/f∗]) + h(q∗[u∗/f∗])

≤ g(q∗[u∗/f∗]) + J(q∗[u∗/f∗]) + ε

≤ C∗ + ε

where u∗ is the top-most and left-most node of q∗ and f∗ is the optimal partial architecture to retain
on node u∗ to get the optimal program P ∗. In other words, we have established an upper bound on
the path cost of the returned synthesized program P r.

B Context-free Grammar Details

We use the context-free grammar in Fig. 1 for synthesizing programmatic classifiers for all the
datasets in our experiment. For each dataset, similar to NEAR [7], we customize parameterized
functions FS,θ(x) that extract a vector consisting of a predefined subset S of the dimensions of an
input data item x and pass the extracted vector through a linear function with trainable parameters θ.
We disclose the details of FS,θ(x) for each dataset below.

Crim13 Dataset. As shown in Table 4, we define 7 feature extraction functions FS,θ(x) for the
Crim13 Dataset. For location information, XY positions of a pair of mice and the distance between
them are recorded. Additionally, distance change measures the distance difference for each two
consecutive frames. To track movement information, velocity and acceleration of a pair of mice are
extracted in X and Y dimensions respectively. Besides, we also include the information on angle and
angle change. The former contains the two relative directions between a pair of mice (one for mouse
1 relative to mouse 2, another for mouse 2 relative to mouse 1) and the difference between the two
relative directions. Angle change represents the change of the two relative directions over time. More
information on the dimensions of this dataset can be found in [20].

Fly-vs-fly Dataset. Table 5 shows the feature functions FS,θ(x) we extract for the Fly-vs-fly dataset.
Although the feature vectors of the dataset have 53 dimensions, we find the 5 feature functions in
the table are sufficient to obtain high accuracy and F1-scores. The linear feature function captures
the values of velocity and distance between two flies. The Angular feature function extracts the
value of angle velocity, relative angle between flies and facing angle of each fly. The feature function
Positional captures the distance over a relative object and fly legs. The feature function ratio extracts
the body ratio of two flies. The feature function wing extracts the angles and lengths of fly wings.

15

Table 7: FS,θ(x) for the SK152 dataset.

Extract Feature Point
Arms 2, 3, 4, 5, 6, 7
Legs 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24
Faces 0, 1, 15, 16, 17, 18

Table 8: Dataset details

Dataset feature dim. category num. max seq. len. # train # valid # test
Crim13 19 2 100 12404 3077 2953
Fly-vs-fly 53 7 300 5341 629 1050
Basketball 22 6 25 18000 2801 2693
SK152 75 10 100 8721 2184 892

Basketball Dataset. As shown in table 6, we define three feature extraction functions for the
Basketball dataset, extracting the positions of the basketball, 5 offensive players, and 5 defensive
players. All positions are expressed in X and Y coordinates.

SK152 Dataset. This dataset uses a total of 25 points to capture human skeletons. Each point is
recorded using XYZ coordinates. We define three customized feature functions arms, legs and face,
each of which extracts a subset of the 25 features.

C Experiment Details

We provide more details about our experiment in this section.

C.1 Training Details

Datasets. Table 8 gives the full details of the four datasets used for evaluation. NEAR [7] does not
release the Fly-vs-fly and Basketball datasets used to obtain the results in its paper. We sample these
datasets following the guidance provided in [7]. Therefore, the datasets used in the evaluation of this
paper are not completely equivalent to that of [7].

Structure Cost. To penalize complex program architectures, we implement the structure cost
function g similar to NEAR [7]. Let each grammar rule r have a non-negative real-valued cost c(r).
The structural cost of a (partial) architecture is the sum of the costs of the multi-set of rules used to
create the architecture.

g(q[u/fuk]) = β ·
∑

r∈q[u/fuk]

c(r)

Importantly, the above formula only counts the grammar rules used to expand the initial nonteriminal
up to node u (recall that u is the top-most and left-most node of q that contains more than one partial
architecture i.e. unexplored nodes are excluded). To balance the structure cost and performance of a
programmatic classifier, we set the cost penalty parameter β to be 0.01 for both dPads and NEAR. In
practice, we set c(r) = 1 for any grammar rule r. For a complete program, the g function essentially
counts the number of grammar rules used to derived the program (timed with β).

C.2 Hyperparameters

RNN Baseline. The RNN baseline policies are 1-layer LSTMs. Table 9 introduces the hyperparam-
eters used for training the RNN baselines. In general, the RNN baselines perform better than the
synthesized programmatic classifiers because their richer structures allow for better data fitting at the
cost of less interpretability. In the experiments, we use the cross-entropy loss to optimize classifier
accuracy for both dPads and baselines.

Several other baselines that we considered include (1) Top-down enumeration that synthesizes
and evaluates complete programs in order of increasing complexity measured using the structural
cost, (2) Monte-Carlo sampling that constructs complete programs by sampling rules (edges) with

16

Table 9: Hyperparameters set for the RNN baseline.

Dataset # LSTM units # epochs learning rate batch size
Crim13 100 50 0.001 50
Fly-vs-fly 80 40 0.00025 30
Basketball 64 15 0.01 50
SK152 75 30 0.01 50

Table 10: Hyperparameters set for Differentiable Architecture Search and Selection in dPads.

Dataset Architecture Search Architecture Selection Batch Sizelearning rate graph_epoch prog_epoch learning rate
Crim13 0.001 6 6 0.001 200
Fly-vs-fly 0.0005 6 6 0.0005 200
Basketball 0.001 4 6 0.02 50
SK152 0.01 4 6 0.01 200

probabilities proportional to their structural costs where the next node to expand along a path has the
best average performance of samples that descended from that node, (3) Monte-Carlo tree search
(MCTS) that traverses the search graph of programs using the UCT selection criteria, where the value
of a node is inversely proportional to the cost of its children, and (4) Genetic algorithm that uses
crossover, selection, and mutation operations to evolve a population of programs over a number of
generations. Unlike dPads, these baselines perform program architecture search in the discrete space
of DSL grammar rules. We do not include these baselines in the experiment section because NEAR
significantly outperforms them [7]. Therefore, it suffices to compare dPads solely with NEAR.

dPads. In the evaluation of dPads, we set graph expansion depth ds (a parameter of Algorithm 1) as
2 for all the four datasets. NEAR uses the number of grammar production rules applied to construct a
program to upper-bound the search space for program learning. The largest number of production
rules allowed for a synthesized program is 8 in NEAR. Instead, we set the max depth of the abstract
syntax tree of a dPads’s synthesized program as 4. Compare to the search space of NEAR, some
programs included in the search space of dPads even need more than 10 production rules to expand
from the initial nonterminal.

For top-N preservation in a program derivation graph, the goal is to retain top-N program architec-
tures as children for each partial architecture on the node’s parent, which are defined to be those
assigned with higher weights on the node’s incoming edge in the previous graph unfolding iteration.
We set N = 2 in our experiments. In practice, we find that a heuristic strategy that iteratively prunes
candidate partial architectures on a program derivation graph node and fine-tunes the derivation
graph at then end of each iteration is more efficient than directly retaining top-N architectures. In a
graph unfolding iteration, after optimizing the architecture weights and unknown program parameter
over an entire program derivation graph for several epochs until the increase of the F1 score of the
whole graph is less than 1%, on each node we retain 4 program architectures as children for each
partial architecture on the node’s parent, then we retrain the program derivation graph for several
epochs again until the increase of F1 score is less than 1% and on each node we retain 3 program
architectures for each partial program architectures on the node’s parent, and finally we apply such
a process again to retain only 2 program architectures to get the desired top-2 preservation in the
program derivation graph.

Table 10 presents the hyperparameters used to train dPads programmatic models. The learning
rates for differentiable architecture search on a program derivation graph and architecture selection
from the converged program derivation graph may be different. For architecture selection, the
number of graph_epoch refers to the number of epochs that is used to optimize the heuristic function
h (Equation 4) when a program derivation graph has nodes containing more than one candidate
architectures. Here we need to optimize both architecture weights and program parameters. The
number of prog_epoch refers to the number epochs that is used to fine-tune the accuracy of a program
derivation graph when every node of the graph contains exactly one architecture, i.e., the graph is the
abstract syntax tree of a valid program. For Crim13 and Fly-vs-fly, both graph_epoch and prog_epoch
are set to 6. For Basketball and SK152, graph_epoch is set to 4 and prog_ epoch is set to 6.

17

Nodes Operations Edges Weights Parameters

crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball

Ac
co

un
t

Nodes Partial Architecture Weights

crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball crim13 sk152 fly-vs-fly Bball

Ac
co

un
t

Partial ArchitecturesNodes Weights

Figure 7: Results of quantifying the number of graph nodes, the total number of partial architectures
(DSL functions) hosted by the nodes, and the total number of architecture weights on graph edges on
program derivation graphs generated by dPads and its variants for each of the datasets.

C.3 Additional Experiment Results

Search Space Reduction. Fig. 7 quantifies the program derivation graph reduction by node sharing
and progressive unfolding. We show for each benchmark the number of nodes, the total number
of partial architectures (DSL functions) hosted by the nodes, and the total number of architecture
weights to train on its program derivation graph. We only show the results of the deepest program
derivation graph generated by dPads on each benchmark. Notice that dPads without progressive graph
unfolding and dPads without node sharing generate program derivation graphs that are significantly
larger.

On Fly-vs-fly, without progressive graph unfolding, the program derivation graph has 33 nodes shared
by 485 partial architectures, and a total of 1021 architecture weights to train. Directly applying dPads
to train under this setting encounters an out-of-memory (OOM) exception (Table 2). In contrast, with
progressive graph unfolding, the deepest graph generated by dPads has only 21 nodes shared by 220
partial architectures, and a total of 370 architecture weights to train. dPads converges in less than 360
mins (Table 2).

On Basketball, without node sharing, the deepest program derivation graph generated by dPads has
94 nodes hosting 302 partial architectures, and a total of 301 architecture weights to train. If directly
running dPads under this setting, the search procedure (Sec. 3.3) times-out (Table 2). In contrast,
with node sharing, the program derivation graph reduces to only 29 nodes shared by 152 partial
architectures, and a total of 259 architecture weights. dPads converges in less than 180 mins (Table 2).

Program Sizes. Table 11 reports the number of grammar rules used to construct synthesized programs
for each benchmark. Compared with NEAR, dPads tends to synthesize more complex programs that
are necessary to ensure higher F1 scores.

On Fly-vs-fly, although NEAR runs faster, it only finds programs derived by 2.8 production rules
but dPads finds much deeper programs derived by 6.8 production rules. Consequently, for this
benchmark, dPads achieves much higher accuracy and F1 scores. A similar trend can be observed
for the results on Crim13 and SK152. dPads learns program classifiers for Crim13 constructed
using 10.2 grammar rules averagely. These classifiers achieve an average of 0.46 F1 scores (on
the test dataset). The shallower classifiers learned by NEAR achieve an average of 0.33 F1 scores
constructed by 5.8 grammar rules averagely. While the dPads classifiers are more complex, the
total s-scores of dPads classifiers (1−F1(p,Dval) + β ·

∑
r∈AST (p) c(r) where p is a classifier), i.e.

synthesized programs’ classification error plus architecture cost (the search objective), are still lower
than that of the programs learned by NEAR. In other words, dPads better balances structure costs
and performance. On Basketball, both tools find programs with 8 production rules. In this case, the
architecture spaces searched by the two tools are roughly equivalent, but dPads is 3 times faster.

The experiment results consistently demonstrate that dPads’s gradient-based architecture search is
much more efficient than NEAR’s enumeration-based strategy. Moreover, NEAR uses neural models
to estimate the performance of a partially expanded program. Our experiments find that due to
overfitting or underfitting, such a neural model may be biased on a particular program. For example,
on Fly-vs-fly, due to the biased estimation, NEAR stops searching the architecture space deeper
than that contains programs derived by only 2.8 production rules. In contrast, (1) dPads uses a

18

Table 11: The average numbers of grammar rules (#R) used to construct synthesized programs
together with the programs’ F1 scores. All results are reported as the average of runs on five random
seeds. Costs of time are set to minutes.

Crim13-sniff Fly-vs-fly Bball-ballhandler SK152-10 actions
F1 #R Time F1 #R Time F1 #R Time F1 #R Time

A∗-NEAR .286 6.8 164.92 .828 2.8 243.82 .940 8.0 553.01 .312 4.2 210.23
IDS-BB-NEAR .323 5.8 463.36 .822 2.4 465.57 .793 7.0 513.33 .314 4.4 848.44

dPads .458 10.2 147.87 .887 6.8 348.25 .945 8.0 174.68 .337 7.6 162.70

Table 12: Standard deviations of F1 scores, accuracy rates, and the number of grammar rules used to
construct synthesized programs. All results are reported as the average of runs on five random seeds.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. Rules F1 Acc. Rules F1 Acc. Rules F1 Acc. Rules

A∗-NEAR .107 .007 3.27 .025 .016 1.10 .007 .009 0.0 .017 .018 0.45
IDS-BB-NEAR .086 .008 2.39 .030 .025 0.89 .012 .015 0.0 .012 .010 0.54
dPads .013 .008 5.31 .011 .006 1.10 .004 .004 0.0 .017 .017 0.55

sub program derivation graph to estimate the performance of a partially expanded program that can
provide more accurate assessment due to the graph’s syntax resemblance to a valid program; (2)
dPads only uses neural models to provide "contrastive" performance estimation for a set of programs
sharing nodes in a program derivation graph when progressively unfolding the graph. As a result, on
Fly-vs-fly, dPads searches the architecture space much deeper containing programs derived by 6.8
production rules. Even dPads typically searches much deeper, it often runs faster than NEAR.

Standard Deviations. We present the standard deviations of accuracy, F1-scores, and numbers of
production rules used to construct learned programs in Table 12. The results confirms the observation
in [7] that NEAR has a higher variance in F1 scores for CRIM13. dPads is more stable on this dataset.

Further Comparison with NEAR. In the comparison with NEAR, we obtain the NEAR results
following the hyperparameters defined in [7]. The only exception is that for Crim13 and Fly-vs-fly, we
modify the batch size for NEAR program learning to be 200 while keeping the other hyperparameters
unmodified to get the results. This is for ensuring a fair comparison of running times with dPads that
sets batch size to 200. In this section, we report the results of NEAR on Crim13 and Fly-vs-fly using
exactly the same hyperparameters as reported in [7], setting batch size to 50 and 30 respectively, and
show the results in Table 13. In this setting, A∗-NEAR and IDS-BB-NEAR get higher F1 scores
that are, however, still lower than that of dPads. Moreover, NEAR costs significantly longer time in
search. Thus, dPads outperforms NEAR in this setting as well.

Comparison with Enumerative Program Synthesis. Besides comparing with NEAR and RNN (as
in Table 1), we also compared dPads with an enumeration strategy that synthesizes and evaluates
complete programs in order of increasing complexity. This strategy is widely used in program
synthesis tasks. We set the running time of the enumeration strategy twice as long as dPads’s
synthesis time. As shown in Table 14, dPads outperforms enumeration strategy on all benchmarks.
Although enumeration gets higher accuracy on Cim13, it underfits this unbalanced dataset as the F1

score is much lower than dPads. We have also tried a Monte-Carlo tree search strategy but found that
its performance is even worse than the simple enumeration strategy on our benchmarks.

C.4 Additional Ablation Study Results

Other than top-N preservation and progressively unfolding program derivation graphs, we explored
other pruning approaches, including reserving the top-N programs across the entire search graph. We
also considered another pruning algorithm which we refer to as First Compare First Unfold (FCFU).
Unlike dPads that separates top-N preservation and progressive graph unfolding with the search
algorithm in Sec. 3.3, FCFU mixes the two optimizations with the search procedure. It manages a
priority queue of program derivation graphs that is initialized to the simplest graph with the initial
nonterminal only. After training converges on a program derivation graph from the priority queue,
FCFU decomposes the graph into several sub graphs by separating the co-adapted architectures on

19

Table 13: Experiment results of NEAR following the exact hyperparameter setting specified in [7].
All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

Crim13-sniff Fly-vs-fly
F1 Acc. Time(mins) F1 Acc. Time(mins)

A∗-NEAR .304 .824 519.60 .873 .827 1208.92
IDS-BB-NEAR .328 .840 1106.28 - - > 1440
dPads .458 .812 147.87 .887 .853 348.25

Table 14: Experiment results on comparing dPads with an enumeration-based synthesis strategy.
The running time of the enumeration strategy is set twice as long as the synthesis time of dPads. All
results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Enumeration .294 .856 .850 .774 .795 .767 .288 .284
dPads .458 .812 .887 .853 .945 .939 .337 .337

Table 15: Ablation study on various pruning methods. All results are reported as the average of runs
on five random seeds. Costs of time are set to minutes.

Crim13 Fly-vs-fly Basketball SK152
F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time

top-5 programs .299 .516 184.16 .652 .554 153.28 .848 .829 30.59 .283 .277 62.04
FCFU .456 .813 489.53 .889 .853 606.65 - - > 1440 .338 .339 319.60
dPads .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70

the top-left most compound node on the graph. On each sub graph, that node contains only one
available architectures. These partitions are pushed back to the queue after fine-tunning (similar to
dPads). Once a graph with each node containing at most one architecture is obtained from the queue
as the least cost, we immediately unfold the graph into deeper levels and push it back to the queue
unless the maximum depth is reached. FCFU prioritizes to unfold the best partial program observed
so far. We compared dPads with FCFU and top-N programs over 5 random runs. The results are
shown in Table 15.

It can be seen that dPads outperforms top-N programs where N is set to 5, achieving higher accuracy
and F1 scores. This is because top-N programs tends to excessively detach many valid DSL functions
from graph nodes (especially when N is small), leading to suboptimal final programs. FCFU achieves
comparable accuracy and F1 scores with dPads but runs significantly slower than dPads. It even
times-out on the Basketball dataset. This is because FCFU only unfolds one best partial program each
time, causing the search queue to grow exponentially longer with graph decomposition. In contrast,
dPads maintains a set of high-quality programs via top-N preservation on nodes and simultaneously
expands all of these programs via progressive graph unfolding.

C.5 Program Examples

We show more synthesized programs by dPads for the four datasets below.

Crim13. The following is a programmatic classifier learned for Crim13.

Map(
if AccelerationAffineθ1(xt)≥ 0
then if PositionAffineθ2(xt)≥ 0

then PositionAffineθ3(xt)
else VelocityAffineθ4(xt)

else Multiply(DistanceAffineθ5(xt), DistanceAffineθ6(xt))) x

In the program, AccelerationAffine, DistanceAffine, PositionAffine, and VelocityAffine are functions
that first select the parts of the input that represent acceleration, distance, position, and velocity

20

measurements, respectively, and then apply affine transformations with parameters θ to the resulting
vectors. The program contains a nested if-then-else (ITE) operation conditioned on the acceleration
of two mice. Our interpretation of the program is that if the difference between the accelerations of
two mice is small, in the first else branch, they are doing “sniff" if the two mice are close to each
other without obvious movements (i.e. the multiplication of their distance is small); otherwise, in the
first then branch, the program evaluates the likelihood of “sniff” by applying a position bias, then
using the velocity of the mice if the mice are close together and not moving fast, and using distance
between the mice otherwise.

We show another programmatic classifier learned for Crim13 below:

MapPrefixes(
Fold(

if DistanceAffineθ1(xt)≥ 0
then PositionAffineθ2(xt)
else PositionAffineθ3(xt))) x

This program has a simpler architecture compared with the one above but has a higher F1 score
(0.468 vs. 0.456) that is comparable to the RNN baseline (vs. 0.481). It exploits the distance and the
position bias between two mice to evaluate if they are doing “sniff".

Fly-vs-fly. We draw two programmatic classifiers for Fly-vs-fly with similar structures below. Both

Fold(
Add(

Add(PositionalAffineθ1(xt),
WingAffineθ2(xt)),

RatioAffineθ3(xt))) x

Fold(
Add(

Add(AngularAffineθ1(xt),
WingAffineθ2(xt)),

Add(RatioAffineθ3(xt),
RatioAffineθ4(xt)))) x

programs consider the wing and the body ratio features of fruit flies for classification. The left
program further extracts the position information and gets a high F1 score 0.904 while the right
program extracts the fly angle velocity and relative facing angle information that results in a lower F1

score 0.888. The better performance of the left program suggests that the position information of
flies is more crucial than the angle features to classify their actions.

SK152. For SK152, we show a learned programmatic classifier that is more complex compared with
the one depicted in the main paper.

SlideWindowAvg(
Add(

if ArmsXYZAffineθ1(xt)≥ 0
then ArmsXYZAffineθ2(xt) else ArmsXYZAffineθ3(xt),
if LegsXYZAffineθ4(xt)≥ 0
then FaceXYZAffineθ5(xt) else LegsXYZAffineθ6(xt))) x

This program applies a sliding window to a trajectory for classification and sums the results of two
ITE operations inside the window. The first ITE operation focuses on human arm behaviors and the
second ITE operation leverages either face movements or leg movements based on the behavior of
human legs. The program results in an F1 score of 0.336 and an accuracy of 0.337.

Basketball. The program synthesized for Basketball to classify the ballhandler is shown below.

Map(
Multiply(

Add(BallXYAffineθ1(xt), OffenseXYAffineθ2(xt)),
Add(OffenseXYAffineθ3(xt), BallXYAffineθ4(xt)))) x

In the program, OffenseXYAffineand and BallXYAffine are parameterized affine transformations over
the XY-coordinates of the offensive players and the ball. The program structure can be interpreted as
computing the distance between the offensive players and the ball to determine the ballhandler. As

21

DSL Grammar

Differentiable
DSL Semantics

Architecture
Search

Architecture
Selection

Differentiable Program Synthesis

Training
Examples

BinaryCrossentropy
CategoricalCrossentropy
…

DSL
Program

DSL Architecture
Cost Model

Figure 8: A high-level framework of dPads.

α0 → And(α1, α1) | Not(α1) | Or(α1, α1) | Xor(α1, α1)

α1 → And(α2, α2) | Not(α2) | Or(α2, α2) | Xor(α2, α2) | LN10

α2 → And(α3, α3) | Not(α3) | Or(α3, α3) | Xor(α3, α3)

α3 → And(α4, α4) | Not(α4) | Or(α4, α4) | Xor(α4, α4) | LN32

α4 → LN30 | LN42

Figure 9: Context-free grammar for cryptographic circuit synthesis in the SyGus project.

we aim to recognize the offensive player who holds the basketball, it suffices to only consider the ball
positions and the offensive players (excluding the information on defensive players). This program
gets a F1 score of 0.945 and an accuracy of 0.939.

C.6 Generalizability

In the paper, we illustrate dPads by focusing on sequence classification. However, dPads is a general
program synthesis algorithm and is not limited to sequence classification.

Fig. 8 depicts a high-level framework of dPads. Other than training data, dPads takes as input a DSL,
the semantics of the DSL, and a cost model of each production rule in the DSL. Importantly, dPads
requires the DSL’s semantics to be differentiable. This is because dPads performs gradient-based
architecture search. To avoid discontinuities in programming constructs such as ITE, we require these
constructs to be interpreted in terms of a smooth approximation. As such, the synthesis algorithm in
dPads is exactly parameterized by a class of DSLs with differentiable semantics. The context-free
grammar in Fig. 1 is such an example. It is straightforward to apply dPads to another DSL with
differentiable semantics.

As an example, we demonstrate the generalizability of dPads by applying it to the cryptographic
circuit synthesis task in the SyGuS (Syntax-Guided Synthesis) project1. The goal is to synthesize a
side-channel free cryptographic circuit by following given context-free grammar while ensuring that
the synthesized circuit is equivalent to the original circuit (a correctness constraint). The grammar
is designed to avoid side-channel attacks, whereas the original circuit is created only for functional
correctness and thus is vulnerable to such attacks. dPads takes as input a circuit grammar as depicted
in Figure. 9. The grammar includes several Boolean operations And, Not, Or and Xor. It also
specifies multiple variables (e.g. LN10 and LN30) to be used by the synthesizer to generate a
desired program (circuit in this context). In this experiment, we aim to synthesize a program that
must be logically equivalent to ϕspec (a correctness specification):

ϕspec : (((LN30 Xor LN32) Xor LN42) Xor LN10) (6)

Notice that the above program itself cannot be expressed using the above grammar.

In order to apply dPads to such a task, the user of dPads must provide a differentiable DSL semantics.
Recall that we have provided a smooth approximation of ITE in Sec.2. We define a differentiable

1https://sygus.org/

22

JAnd(α1, α2)K(v) = min(Jα1K(v), Jα2K(v))

JOr(α1, α2)K(v) = max(Jα1K(v), Jα2K(v))

JXor(α1, α2)K(v) = Jα1K(v) + Jα2K(v)− 2Jα1K(v) · Jα2K(v)

JNot(α)K(v) = 1− JαK(v)

JLN10K(v) = v[LN10]

JLN30K(v) = v[LN30]

JLN32K(v) = v[LN32]

JLN42K(v) = v[LN42]

Figure 10: Differentiable semantics for Boolean operations.

semantics for And, Not, Or and Xor similarly in Figure 10. Given a program ϕ in the DSL and a
Boolean assignment v as the variables in ϕ, ϕ(v) is deemed to be True if Jϕ(v)K is closer to 1 and
ϕ(v) is deemed to be False if Jϕ(v)K is closer to 0.

dPads constructs a program derivation graph to include each possible program allowed by the
grammar. Given a set of input-output examples, it trains the architecture weights of the program
derivation graph by minimizing the MSE loss between the graph’s outputs (Equation. 3) and the
ground truth outputs. In this example, an input is an assignment to the variables, e.g. v = {LN10 :
0, LN30 : 1, LN32 : 0, LN42 : 1}. The corresponding output is whether the input variable
assignment v should be evaluated to 1 (True) or 0 (False). We collect the input-output examples using
counterexample-guided inductive synthesis (CEGIS) by iteratively querying an SMT solver (such
as Z32) whether a synthesized program ϕ is logically equivalent to ϕspec. Any counterexample that
witnesses the inequivalence of ϕ and ϕspec is added to the input-output example set. Since the DSL
semantics is differentiable, dPads can efficiently learn architecture weights using gradient descent
optimization and hence return the best program it synthesizes. For our example, dPads synthesizes
the following solution that is verified equivalent to ϕspec:

(LN10 Xor ((LN32 Xor (LN42 Or LN30)) Xor ((LN30 Or LN42) And (LN30 And LN42))))

In our experience, dPads is very efficient in solving the circuit synthesis problem and can reduce the
synthesis time from minutes by EUSolver3 (an enumerative SyGuS solver) to seconds.

D Additional Discussions

D.1 Limitations

Performance gap to RNN. dPads’s performance does not match the RNN baseline. This is mainly
due to the limitations in expressivity imposed by the DSL. Firstly, in the DSL, we only allow for
customized feature functions FS,θ(x) that extract a vector consisting of a predefined subset S of
the dimensions of an input sequence x and pass the extracted vector through a linear function with
trainable parameters θ. For example, for Crim13, we predefine feature functions such as the XY
positions, angles, velocity, acceleration, distance of a pair of mice, and distance difference for every
two consecutive frames. We list the details of FS,θ(x) for each dataset in Appendix B. These feature
functions are extremely helpful to ensure that a synthesized program composed of these functions is
interpretable. However, a program limited to these predefined feature functions may be suboptimal
as only a subset of features is used. Instead, an RNN policy can understand the whole context of a
sequence using all features available from the input. Secondly, for the sake of interpretation, our DSL
also predefines a limited set of algebraic operations to process the outputs from the feature functions,
as shown in Fig. 1. However, an RNN can use a more expressive activation function to learn about
long-term dependencies in data. We have reported the performance limitation of dPads in Table 1.

Program Derivation Graph Accuracy. Another important limitation is that performance estimation
of each program included in a program derivation graph ranked by architecture weights can be

2https://github.com/Z3Prover/z3
3https://bitbucket.org/abhishekudupa/eusolver/src/master/

23

inaccurate due to the co-adaption among partial architectures (node sharing). As one super program
derivation graph may not be able to model the entire search space accurately, we have used multiple
sub program derivation graphs generated on the fly via a search procedure to address this problem
(Section 3.3). Each sub derivation graph models one part of the search space. However, as reported
in Table. 3, the search method slows down the whole synthesis procedure and may need additional
optimization.

D.2 Further Comparison with NEAR

Although dPads and NEAR [7] both formalize program synthesis as a graph search problem, the two
techniques are very different. We compare dPads and NEAR in depth as follows.

NEAR. Typically, search-based program synthesizers enumerate the underlying program space in
some order and for each program checks whether or not it satisfies the synthesis constraints. It is
a challenging problem because the architecture search space is combinatorial. The most simple
strategy that starts by searching for programs with 1 DSL production rule and iteratively increases this
bound does not scale to complex programs. NEAR uses neural models to approximate unexpanded
subexpressions to estimate the likelihood of eventually deriving a high-quality program by choosing
a particular production rule. It leverages this kind of information to prioritize promising search
directions and hence can greatly accelerate the search process. However, NEAR’s search strategy is
still discrete and enumeration-based.

dPads’s Contributions. dPads proposes a new, scalable program synthesis technique. It views pro-
gram architecture search as learning a probability distribution over all possible program architectures
induced by a DSL. Unlike NEAR that enumerates and evaluates each program by training unknown
parameters from scratch, dPads reduces the computation cost by training one program, a.k.a. a
program derivation graph, to approximate the performance of every program in the search space. It
learns the architecture weights of each program encoded in a program derivation graph in a way that
ranks the performance estimation of these programs. The search procedure in dPads is more efficient
because it supports gradient-based architecture optimization in a novel continuous relaxation of the
program architecture search space.

dPads’s Impacts. To the best of our knowledge, dPads is the first program synthesis technique that
applies gradient-based architecture search. Experiment results on sequence classification demonstrate
that thanks to this strategy, dPads can efficiently search in a deep program space to learn sophisticated
programs that are necessary to ensure high F1 scores.

D.3 Using Neural Networks to Approximate Missing Expressions

Both dPads and NEAR [7] use neural networks to approximate missing expressions of partial
architectures. However, the key difference is that dPads does not use neural models to estimate
the performance of a partially expanded program. This is because our experiments find that due to
overfitting or underfitting, a neural model may be biased on a particular program. In contrast, dPads
uses a sub program derivation graph to estimate the performance of a partially expanded program.
We find that it can provide more accurate assessment due to the graph’s syntax resemblance to a valid
program. This enables dPads to be able to search deeper than NEAR in the program architecture
space to synthesize more sophisticated programs that are necessary to ensure higher F1 scores. For
example, on Fly-vs-fly, NEAR’s inaccurate admissible neural heuristics prevent it from searching
the architecture space deeper than that contains programs derived by just 2.8 production rules. In
contrast, during architecture selection, dPads uses a sub program derivation graph to estimate the
performance of a partially expanded program. The sub program derivation graph provides a more
accurate assessment. As a result, dPads searches the architecture space much deeper containing
programs derived by 6.8 production rules and gets a much higher F1 score (.887 vs .828).

dPads only uses neural models to provide contrastive performance estimation for a set of programs
sharing nodes in a program derivation graph for progressive graph unfolding (Section 3.2). For
example, on the Basketball dataset, the architecture spaces searched by the two tools are roughly
equivalent. dPads is 3 times faster. This is in part because dPads uses the same set of neural networks
to provide contrastive performance estimation for the set of programs sharing nodes and does require
the performance estimation on a single program to be accurate. In progressive graph unfolding, this
strategy effectively and efficiently prunes away a large set of unlikely search directions.

24

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code is shown
in Algorithm 1, data and instructions are shown in Section 4.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See section 4.3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See citations in section 4
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See citations in section 4
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

25

	Introduction
	Problem Formulation
	Differentiable Program Architecture Synthesis
	Node Sharing
	Progressive Graph Unfolding
	Searching Optimal Programs

	Experiments
	Datasets for Evaluation
	Experimental Setup
	Experiment Results
	Ablation Studies

	Related Work
	Conclusions
	Optimality of the search procedure in Algorithm 1
	Context-free Grammar Details
	Experiment Details
	Training Details
	Hyperparameters
	Additional Experiment Results
	Additional Ablation Study Results
	Program Examples
	Generalizability

	Additional Discussions
	Limitations
	Further Comparison with NEAR
	Using Neural Networks to Approximate Missing Expressions

