Abstract

Differentiable programs have recently attracted much interest due to their interpretability, compositionality, and their efficiency to leverage differentiable training. However, synthesizing differentiable programs requires optimizing over a combinatorial, rapidly exploded space of program architectures. Despite the development of effective pruning heuristics, previous works essentially enumerate the discrete search space of program architectures, which is inefficient. We propose to encode program architecture search as learning the probability distribution over all possible program derivations induced by a context-free grammar. This allows the search algorithm to efficiently prune away unlikely program derivations to synthesize optimal program architectures. To this end, an efficient gradient-descent based method is developed to conduct program architecture search in a continuous relaxation of the discrete space of grammar rules. Experiment results on four sequence classification tasks demonstrate that our program synthesizer excels in discovering program architectures that lead to differentiable programs with higher F_1 scores, while being more efficient than state-of-the-art program synthesis methods.

1 Introduction

Program synthesis has recently emerged as an effective approach to address tasks in several fields where deep learning is applied traditionally. A synthesized program in a domain-specific language (DSL) provides a powerful abstraction for summarizing discovered knowledge from data and offers greater interpretability and transferability across tasks than a deep neural network model, while achieving competitive task performance [1–4].

A differentiable program encourages interpretability by using structured symbolic primitives to compose a set of differentiable modules with trainable parameters in its program architecture. These parameters can be efficiently learned with respect to a differentiable loss function over the program's outputs. However, synthesizing a reasonable program architecture remains challenging because the architecture search space is discrete and combinatorial. Various enumeration strategies have been developed to explore the program architecture space, including greedy enumeration [1,2], evolutionary search [5], and Monte Carlo sampling [6]. To prioritize highly likely top-down search directions in the combinatorial architecture space, NEAR [7] uses neural networks to approximate missing expressions in a partial program whose F_1 score serves as an admissible heuristic to effective graph search algorithms such as A^* [8]. However, since the discrete program architecture search space is intractably large, enumeration-based search strategies are inefficient in general.

We propose to encode program architecture search as learning the probability distribution over all possible program architecture derivations induced by a context-free DSL grammar. This problem bears similarities with searching the structure of graphical models [9] and neural architecture search. For example, to search a high-quality neural network model, DARTS [10] uses a composition of softmaxes over all possible candidate operations between a fixed set of neural network nodes to relax the discrete search space of neural architectures. However, applying this method to program synthesis...
We note that the proposed synthesis technique is applicable to learning any differentiable programs.

We evaluate our synthesis algorithm in the context of learning classifiers for sequence classification.

Add and \(\alpha \) can appear in a program's code, e.g., \(x \).

Backus-Naur form \([13]\) in Fig. 1, adapted from \([7]\). A terminal in this grammar is a symbol that can use in a program's code, e.g., \(x \).

Program Architecture Synthesis. A program architecture \(\alpha \) is typically synthesized based on a context-free grammar \([12]\). Such a grammar consists of a set of production rules \(\alpha_k \rightarrow \{ \sigma_j \}_{j=0} \) over terminal symbols \(\Sigma \) and nonterminal symbols \(Y \) where \(\alpha_k \in Y \) and \(\sigma_j \in \Sigma \cup Y \). As an example, consider the context-free grammar of a DSL for sequence classification depicted in the standard Backus-Naur form \([13]\) in Fig. 1 adapted from \([7]\). A terminal in this grammar is a symbol that can appear in a program's code, e.g., \(x \) and the map function symbol, while a nonterminal stands for a missing expression (or subexpression), e.g., \(\alpha_2 \) and \(\alpha_3 \). Any program in the DSL operates over a real vector or a sequence of real vectors \(x \). It may use constants \(c \), arithmetic operations Add and Multiply, and an If-Then-Else branching construct ITE. To avoid discontinuities for

is challenging because the program architecture search space is much richer \([7]\). Firstly, different sets of operations take different input and output types and may only be available at different points of a program. Secondly, there is no fixed bound on the number of expressions in a program architecture.

To address the aforementioned challenges, we learn the probability distribution of program architectures in a continuous relaxation of the search space of DSL grammar rules. We conduct program architecture search in a program derivation graph, in which nodes encode architectures with missing expressions, and paths encode top-down program derivations. For each partial architecture \(f \) on a graph node, we relax the categorical choice of production rules for expanding a missing expression in \(f \) to a softmax over all possible production rules with trainable weights. A program derivation graph essentially expresses all possible program derivations under a context-free grammar up to a certain depth bound (on the height of program abstract syntax trees), which can be progressively increased during search to balance accuracy and architecture complexity. We encode a program derivation graph itself as a differentiable program whose output is weighted by the outputs of all the programs involved. We seek to optimize program architecture weights with respect to an accuracy loss function defined over the encoded program’s output. The learned weights allow our synthesis algorithm to efficiently prune away search directions to unlikely program derivations to discover optimal programs. Compared with enumeration-based synthesis strategies, differentiable program synthesis in the relaxed architecture space is easier and more efficient with gradient-based optimization.

One major challenge of differentiable program architecture synthesis is that a program derivation graph involves an exponential number of programs and a huge set of trainable variables including architecture weights and program parameters. To curb the large program derivation search space, we introduce node sharing in program derivation graphs and progressive graph unfolding. Node sharing allows two partial architectures to share the same child nodes if the missing expressions in the two architectures can be expanded using the same grammar rules. Progressive graph unfolding allows the synthesis algorithm to construct a program derivation graph on the fly focusing on higher-quality program derivations than all the rest. These optimization strategies significantly reduce the program architecture search space, scaling differentiable program synthesis to real-world classification tasks.

We evaluate our synthesis algorithm in the context of learning classifiers for sequence classification applications. We demonstrate that our algorithm substantially outperforms state-of-the-art methods for differentiable program synthesis, and can learn programmatic classifiers that are highly interpretable and are comparable to neural network models in terms of accuracy and \(F_1 \)-scores.

As a summary, this paper makes three contributions. Firstly, we encode program synthesis as learning the probability distribution of program architectures in a continuous relaxation of the discrete space defined by programming language grammar rules, enabling differentiable program architecture search. Secondly, we instantiate differentiable program architecture synthesis with effective optimization strategies including node sharing and progressive graph unfolding, scaling it to real-world classification tasks. Lastly, we present state-of-the-art results in learning programmatic classifiers for four sequence classification applications.

2 Problem Formulation

A program in a domain-specific language (DSL) is a pair \((\alpha, \theta)\), where \(\alpha \) is a discrete program architecture and \(\theta \) is a vector of real-valued parameters of the program. Given a specification over the intended input-output behavior of an unknown program, program synthesis aims to discover the program’s architecture \(\alpha \) and optimize the program parameters \(\theta \).

In this paper, we focus on learning programmatic classifiers for sequence classification tasks \([11]\). We note that the proposed synthesis technique is applicable to learning any differentiable programs.

Program Architecture Synthesis. A program architecture \(\alpha \) is typically synthesized based on a context-free grammar \([12]\). Such a grammar consists of a set of production rules \(\alpha_k \rightarrow \{ \sigma_j \}_{j=0} \) over terminal symbols \(\Sigma \) and nonterminal symbols \(Y \) where \(\alpha_k \in Y \) and \(\sigma_j \in \Sigma \cup Y \). As an example, consider the context-free grammar of a DSL for sequence classification depicted in the standard Backus-Naur form \([13]\) in Fig. 1 adapted from \([7]\). A terminal in this grammar is a symbol that can appear in a program’s code, e.g., \(x \) and the map function symbol, while a nonterminal stands for a missing expression (or subexpression), e.g., \(\alpha_2 \) and \(\alpha_3 \). Any program in the DSL operates over a real vector or a sequence of real vectors \(x \). It may use constants \(c \), arithmetic operations Add and Multiply, and an If-Then-Else branching construct ITE. To avoid discontinuities for
We formulate program architecture derivation as a form of top-down graph traversal. Given the context-free grammar

\[\alpha ::= x \mid \text{Add } \alpha_1 \alpha_2 \mid \text{Multiply } \alpha_1 \alpha_2 \mid \text{ITE } \alpha_1 \geq 0 \alpha_2 \alpha_3 \mid F_{S,\theta}(x) \mid \text{map } (\text{fun } x_1, \alpha_1) x \mid \text{mapprefix } (\text{fun } x_1, \alpha_1) x \mid \text{fold } (\text{fun } x_1, \alpha_1) c x \mid \text{SlideWindowAvg } (\text{fun } x_1, \alpha_1) x\]

We define the complexity of a program architecture \(\alpha\) as

\[\alpha = \alpha \cdot \alpha + \rho \alpha\]

for any production rule \(\alpha\).

Intuitively, program architectures with lower structural cost are more interpretable. In the context of this paper, program synthesis aims to learn a simple program (in terms of structure cost) that satisfies some specifications over program input-output behaviors. In this paper, we set \(c(r) = 1\) for any production rule \(r\).

Program Synthesis Specifications. In a sequence classification task, a set of feature sequences \(\{i_k\}_{k=1}^n\) are taken as input and we expect to classify \(i_k\) into a certain category \(o_k\). Each \(i_k\) is a sequence of observations. Each observation captures features extracted at a frame as a 1-dimensional real-valued vector. We aim to synthesize a program \(P(\cdot; \alpha, \theta)\) as a classifier with high accuracy and low architecture cost. Our program synthesis goal is formalized as follows:

\[
\arg\min_{\theta, \alpha} \mathbb{E}_{i_k, o_k \sim D} [\ell(P(i_k; \alpha, \theta), o_k)] + c(\alpha)
\]

where \(D(i_k, o_k)\) is an unknown distribution over input sequences \(i_k\) and labels \(o_k\). The first term of Equation (1) defines some prediction error loss \(\ell\) of a program \(P(\cdot)\) for a classification task over \(P\)'s predicted labels and the ground truth labels. The second term enforces program synthesis to learn an architecturally simple classifier.

3 Differentiable Program Architecture Synthesis

We formulate program architecture derivation as a form of top-down graph traversal. Given the context-free grammar \(G\) of a DSL, an architecture derivation starts with the initial nonterminal (i.e. the empty architecture), then applies the production rules in \(G\) to produce a series of partial architectures which consist in expressions made from one or more nonterminals and zero or more terminals, and terminates when a complete architecture that does not include any nonterminals is derived.
Formally, program architecture synthesis with respect to a context-free grammar G is performed over a directed acyclic program derivation graph $G = \{ V, E \}$ where V and E indicate graph nodes and edges. Fig. 2 depicts a program derivation graph for the sequence classification grammar in Fig. 1. A node $u \in V$ is a set of partial or complete program architectures permissible by G. An edge $(u, u') \in E$ exists if one can obtain the architectures in u' by expanding a nonterminal of an architecture in u following some production rules of G. For simplicity, Fig. 2 only shows three partial or complete architectures in any node of the program derivation graph. In the graph node at depth 1, we expand the initial nonterminal $\alpha_1^{0,0}$ to the Add, ITE and Map functions (each with missing expressions) using the grammar rules in Fig. 1. Notice that the edge direction in a program derivation graph indicates search order. However, program dataflow through each edge (u, u') is in the opposite direction. The output of u' is calculated first and then passed as input to u.

The main challenge of program architecture synthesis is that the search space embedded in a program derivation graph is discrete and combinatorial. Enumeration-based synthesis strategies are inefficient in general because of the intractable search space. Instead, we aim to learn the probability distribution of program architectures within a program derivation graph in a continuous relaxation of the search space. Specifically, to expand a nonterminal of a partial program architecture, we relax the categorical choice of production rules in a context-free grammar into a softmax over all possible production rules with trainable weights. For example, in Fig. 2 if we expand the initial nonterminal $\alpha_1^{0,0}$ to a partial architecture Add $\alpha_1^{1,0}, \alpha_2^{1,0}$ on node 1, we have several choices to further expand the architecture's first nonterminal $\alpha_1^{1,0}$, weighted by the probability matrix w (obtained after softmax) drawn in Fig. 2. Based on w, the synthesizer chooses to expand $\alpha_1^{1,0}$ to Add $\alpha_1^{2,0}, \alpha_2^{2,0}$ on node 2. Our main idea to learn architecture weights is to encode a program derivation graph itself as a differentiable program $T_{w,\theta}$ whose output is weighted by the outputs of all programs included in $T_{w,\theta}$, where w represents architecture weights and θ includes program parameters of all the mixed programs in the graph. The parameters w and θ can be jointly optimized with respect to a differentiable loss function ℓ over program outputs via bi-level optimization. Similar to DARTS [10], we train θ and w on a parameter training dataset D_θ and an architecture validation dataset D_w respectively until convergence:

$$
\begin{align*}
\theta' &= \theta - \nabla_\theta \mathbb{E}_{i_k, o_k \sim D_\theta} \ell\left(T_{w,\theta}(i_k), o_k\right) \\
W' &= w - \nabla_w \mathbb{E}_{i_k, o_k \sim D_w} \ell\left(T_{w,\theta'}(i_k), o_k\right)
\end{align*}
$$

However, a program derivation graph includes an exponential number of programs. Therefore, it involves a huge set of trainable variables including program architecture weights w and unknown program parameters θ. To curb the large program derivation search space, we introduce node sharing (Sec. 3.1) and progressive graph unfolding (Sec. 3.2).

3.1 Node Sharing

Intuitively, node sharing in a program derivation graph allows two partial architectures to share the same child nodes if the nonterminals in the two architectures can be expanded using the same production rules of a context-free grammar. Fig. 3 depicts the compressed program derivation graph for the sequence classification grammar in Fig. 1. At depth 1, three partial architectures Add $\alpha_1^{1,0}, \alpha_2^{1,0}$, ITE $\alpha_1^{1,1}, \alpha_2^{1,1}, \alpha_3^{1,1}$, and Map (fun $x_1, \alpha_1^{1,2}$) are expanded from the initial nonterminal $\alpha_1^{0,0}$. Because only one of the three partial architectures would be used to derive the final synthesized program, we allow the nonterminals $\alpha_1^{1,0}$, the second parameter of Add, and $\alpha_2^{1,1}$, the second parameters of ITE, to share the same child node 3, weighted by the probability matrix w drawn in Fig. 2. Importantly, node sharing takes function arities and types into account. The matrix w has 0 probability for the Map partial architecture because unlike Add and ITE it does not contain a second parameter.

Formally, in a program derivation graph, let K_u be the number of program architectures on node u. Denote $f_k^u(\alpha_1^{u,k}, \ldots, \alpha_{\eta(f_k^u)}^{u,k})$ as the k-th (partial) architecture on u where $\eta(f_k^u)$ is the number of nonterminals contained in f_k^u and $\alpha_i^{u,k}$ is the i-th nonterminal of f_k^u. For the grammar of Fig. 1 essentially each f_k^u is a function application with missing argument expressions $\alpha_{i,k}^{u,k}, 1 \leq i \leq \eta(f_k^u)$, and $\eta(f_k^u)$ is the arity of the function. Assume that u' is the i-th child of u from left to right in the program derivation graph. The weight $w_{e}(u, u')$ of the edge $e = (u, u')$ is of the shape $\mathbb{R}^{K_u \times K_{u'}}$ where the matrix rows refer to the partial architectures on u and the matrix columns refer to architectures on u'. We have $w_{e}([k, k')]$ proportional to the probability of expanding the i-th nonterminal of f_k^u to $f_{k'}^u$.

4
(obtained after softmax), e.g., the w matrix drawn in Fig. 3. To make the architecture search space continuous, we relax the categorical choice of expanding a particular nonterminal $\alpha_i^{u,k}$ to a softmax over all possible grammar production rules for $\alpha_i^{u,k}$ in the program derivation graph:

$$
\mathbb{P}(\alpha_i^{u,k}) (x) = \frac{\exp(\omega_x^u(k,k'))}{\sum_{k'=0}^{K_{max}} \exp(\omega_x^u(k,k'))} \cdot \mathbb{P}(\alpha_i^{u,k'}),
$$

where u' is the i-th child of u and $e = (u,u')$.

Complexity. Let D be the depth of a program derivation graph for a context-free grammar, K_{max} be the number of productions rules, and η_{max} be the maximum number of nonterminals in any rules of the grammar. With node sharing, we reduce the space complexity of the program derivation graph from $O((K_{max} \cdot \eta_{max})^{D+1})$ to $O((\eta_{max})^{D+1})$. In a program synthesis task, K_{max} is typically much larger than η_{max}. Without compression, a program derivation graph with a large K_{max} hardly fits GPU memory.

3.2 Progressive Graph Unfolding

Node sharing significantly restricts the width of a program derivation graph. However, a derivation graph still grows exponentially with its depth, which limits the scalability of differentiable architecture search. To address this problem, we propose an on-the-fly approach that unfolds program derivation graphs progressively and prunes away unlikely candidate architectures at the end of each iteration based on their weights. Fig. 4 depicts the progressive procedure of derivation graph unfolding.

At the initial iteration, the program derivation graph is shallow as it only contains architectures up to depth d_s. We set $d_s = 2$ in Fig. 4. For any partial program architecture $f^u_k(\alpha_1^{u,k}, \ldots, \alpha_n^{u,k})$ on any leaf node u of the depth-bounded graph, our algorithm substitutes neural networks for the nonterminals $\alpha_i^{u,k}$ to approximate the missing expressions. These networks are type-consistent. For example, a recurrent neural network is used to replace a missing expression whose inputs are supposed to be sequences. For a program derivation graph as such, the unknown program parameters θ come from both the parameterized functions and the neural modules. Our synthesis algorithm optimizes the architecture weights and the unknown program parameters using Equation (3).

In the next iteration, on each graph node, our synthesis algorithm retains top-N program architectures as children for each partial architecture on the node’s parent, which are defined to be those assigned with higher weights on the node’s incoming edge in the previous iteration. We set $N = 2$ in the example of Fig. 3. After top-N preservation on each node, our synthesis algorithm increases the depth of the program derivation graph by expanding the nonterminals (that were replaced with neural modules in the previous iteration) d_s depths deeper. Suitable neural networks are leveraged to substitute any new nonterminals at depth $2d_s + 1$. Our algorithm again jointly optimizes architecture weights and unknown program parameters and performs top-N preservation on each node based on learned architecture weights, as depicted in Fig. 4. Such a process iterates until the unfolded program...
3.3 Searching Optimal Programs

Once we have an optimized program derivation graph \(G \), due to the top-\(N \) preservation strategy, each node retains a small number of partial architectures. From \(G \), we could greedily obtain a discrete program architecture top-down by replacing each graph node containing mixed partial architectures with the most likely partial architecture based on learned architecture weights. However, the performance estimation ranked by architecture weights in a program derivation graph can be inaccurate due to the co-adaption among architectures via node sharing. Recent work also discovers that relaxed architecture search methods tend to overfit to certain functions that lead to more rapid gradient descent than others \([14,17]\) and thus produce unsatisfying performance.

To overcome this potential disadvantage of differentiable architecture search, our algorithm introduces a search procedure as depicted in Fig. 4. The core idea is that while one super program derivation graph may not be able to model the entire search space accurately, multiple sub program derivation graphs can be used to effectively address the limitation by having each sub graph modeling one part of the search space.

In the search, Algorithm 1 maintains a queue \(Q \) of program derivation graphs sorted by their quality that is initialized to \([G] \). Our algorithm measures the quality of a program by both its task performance and structure cost. The algorithm dequeues one graph \(q \) from \(Q \) and extracts the top-most and left-most node \(u \) of \(q \) that still contains more than one partial architecture for search. As \(u \) co-adapts multiple architectures, we separate the entire search space into disjoint partitions by picking each available architecture \(f_k^u(\alpha_{k}^{u,k}, \ldots, c_{n}^{u,k}) \) from the compound node \(u \) and assign a sub program derivation graph to model each partition. The algorithm computes a quality score \(s \) for each option of retaining only \(f_k^u \) on \(u \), denoted as \(q[u/f_k^u] \):

\[
s(q[u/f_k^u]) = g(q[u/f_k^u]) + h(q[u/f_k^u])
\]

The \(g(q[u/f_k^u]) \) function measures the structure cost of expanding the initial nonterminal up to \(u \) (Sec. 2) and \(h(q[u/f_k^u]) \) is an \(\epsilon \)-Admissible heuristic estimate of the cost-to-go from node \(u \) \([18]\):

\[
h(q[u/f_k^u]) = 1 - F_{\mathcal{T}}(T_{w^*, \theta^*}[u/f_k^u], D_{val})
\]

where \(\mathcal{T} \) encodes the program derivation graph \(q \) itself via Equation 3 as a differentiable program whose output is weighted by the output of all complete programs included in \(q \), \(w \) and \(\theta \) are the sets of architecture weights and unknown program parameters in the subgraph rooted at \(u \) in \(q[u/f_k^u] \). The \(h \) function fine-tunes these trainable variables using the training dataset \(D \) to provide informed feedback.
on the contribution to program quality by the choice of only retaining f_k^u on node u, measured by the program’s F_1 score. In practice, to avoid overfitting, we use a separate validation dataset to obtain the F_1 score. After computing the quality score s, we add $q[u/f_k^u]$ back to the queue Q sorted based on s-scores. The search algorithm completes when the derivation graph with the least s-score from Q is a well-typed program, i.e. each graph node contains only one valid architecture choice. Our architecture selection algorithm is optimal given the admissible heuristic function h — the returned program optimally balances program accuracy and structure complexity among all the programs contained in G. The proof is given in Appendix A.

4 Experiments

We have implemented Algorithm 1 in a tool named dPads (domain-specific Program architecture differentiable synthesis) [19], and evaluated it on four sequence classification datasets.

4.1 Datasets for Evaluation

We partition a dataset to training, validation, and test datasets. dPads uses the training dataset to optimize the architecture weights and program parameters in a program derivation graph. When searching a final program from a converged program derivation graph, we use the validation dataset to obtain the program’s F_1 score to guide the search. We use the test dataset to obtain the final accuracy and F_1 score of a program. Additionally, in training we construct two separate datasets by randomly selecting 60% of a training dataset as D_θ to optimize program parameters θ and using the remaining 40% as D_w to train architecture weights w via Equation 2.

Crim13 Dataset. The dataset collects social behaviors of a pair of mice. We cut every 100 frames as a trajectory. Each trajectory frame is annotated with an action by behavior experts [20]. For each frame, a 19-dimensional feature vector is extracted including the positions and velocities of the two mice. The goal is to synthesize a program to classify each trajectory to action sniff or no sniff. In total we have 12404, 3077, and 2953 trajectories in the training set, validation set, and test set respectively.

Fly-vs-fly Dataset. We use the Boy-meets-boy, Aggression and Courtship datasets collected in the fly-vs-fly environment for monitoring two fruit flies interacting with each other [21]. Each trajectory frame is a 53-dimensional feature vector including fly position, velocity, wing movement, etc. We subsample the dataset similar to [7], which results in 5341 train trajectories, 629 validation trajectories, and 1050 test trajectories. We aim to synthesize a program to classify each trajectory as one of 7 actions displaying aggressive, threatening, and nonthreatening behaviors.

Basketball Dataset. The dataset tracks the movement of a basketball, 5 defensive players and 5 offensive players [22]. Each trajectory has 25 frames with each frame as a 22-dimensional feature vector of ball and player position information. We aim to learn a program that can predict which offensive player handles the ball or whether the ball is being passed. In total we have 18000, 2801, and 2693 trajectories in the training set, validation set, and test set respectively.

Skeletics 152 Dataset. The dataset [23] contains 152 human pose actions as well as related YouTube Videos subsampled from Kinetics-700 [24]. For each video frame, 25 3-D skeleton points are collected, resulting in a 75-dimensional feature vector per frame. We extract 100 frames from each trajectory to reduce noise. Finally, the training set contains 8721 trajectories, the validation set contains 2184 trajectories, and the test set contains 892 trajectories. We aim to learn a program to classify a pose trajectory as one of 10 actions.

As discussed in Sec. 2, the DSL for each dataset is equipped with a customized library of differentiable and parameterized functions $F_{S,\theta}(x)$. We define these functions in Appendix B. In this paper, we focus on sequence classification benchmarks. However, dPads is a general program synthesis algorithm and is not limited to sequence classification. In Appendix C.6, we evaluate dPads on cryptographic circuit synthesis to demonstrate the generalizability of dPads.

4.2 Experimental Setup

To train architecture weights w and unknown program parameters θ in a differentiable program architecture derivation graph, we use the Adam optimizer [25]. In Algorithm 1, we set $N = 2$ for top-N preservation and set graph expansion depth d_s to 2. For evaluation, we compare dPads
Table 1: Experiment results on the performance of dPads compared with NEAR [7]. All results are reported as the average of runs on five random seeds. Costs of time are set in minutes.

<table>
<thead>
<tr>
<th></th>
<th>Crim13-sniff</th>
<th>Fly-vs-fly</th>
<th>Bball-ballhandler</th>
<th>SK152-10 actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>Acc.</td>
<td>Time</td>
<td>F1</td>
</tr>
<tr>
<td>RNN</td>
<td>0.481</td>
<td>0.851</td>
<td>964</td>
<td>0.945</td>
</tr>
<tr>
<td>A*-NEAR</td>
<td>0.323</td>
<td>0.820</td>
<td>164.92</td>
<td>0.828</td>
</tr>
<tr>
<td>IDS-BB-NEAR</td>
<td>0.323</td>
<td>0.834</td>
<td>463.36</td>
<td>0.822</td>
</tr>
<tr>
<td>dPads</td>
<td>0.458</td>
<td>0.812</td>
<td>147.87</td>
<td>0.887</td>
</tr>
</tbody>
</table>

Figure 5: Experiment results on the Crim13, Fly-vs-fly, Basketball and SK152 datasets over five random seeds. x axis refers to costs of time recorded in minutes and y axis refers to F_1 scores.

4.3 Experiment Results

For a fair comparison with NEAR [7], for any of the four datasets, all tools search over the same DSL. We use random seeds 0, 1000, 2000, 3000, 4000 and report average F_1 scores, accuracy rates and execution times for both methods. We also report the results achieved using a highly expressive RNN baseline which provides a task performance upper bound on F_1-scores and accuracy.

Table 1 shows the experiment results. On both the Crim13 and SK152 datasets, dPads outperforms A*-NEAR and IDS-BB-NEAR achieving higher F_1 scores and using much less time consumption. dPads also achieves competitive accuracy with NEAR on Crim13. On the Basketball dataset, although dPads achieves a bit higher F_1 score, the architectures synthesized by dPads and A*-NEAR are exactly the same. However, dPads takes 70% less time to get the result. While A*-NEAR completes the search faster than dPads on Fly-vs-fly, the program architecture synthesized by dPads leads to a program with a much better F_1 score and higher accuracy. More quantitative analyses of the experiment results are given in Appendix C.1 and C.2.

We visualize the results of dPads and NEAR in terms of F_1 scores (y axis) and running times (x axis) on the 5 random seeds in Fig. 5 where red triangles refer to the results of dPads, and black plus marks and rectangles refer to the results of A*-NEAR and IDS-BB-NEAR. dPads consistently outperforms NEAR in achieving higher F_1 scores with less computation and is closer to the RNN baseline.

Although the RNN baseline provides better performance, dPads learns programs that are more interpretable. Fig. 6 depicts the best programs synthesized by dPads on Crim13 and SK152 (among all the 5 random seeds). The program for Crim13 has a simple architecture and achieves a high F_1 score 0.475 (only 0.006 less than the RNN result). It invokes two $F_{\theta, \phi}$ library functions: PositionAffine and DistanceAffine. This program is highly human-readable: it evaluates the likelihood of “sniff” by applying a position bias and if the distance between two mice is small they are doing a “sniff”. The programmatic classifier for SK152 achieves an F_1 score 0.35 which is close to the RNN baseline. It uses the arm and leg positions of a 3-D skeleton to complete a human-action classification. We show more examples about the interpretability of programs learned by dPads in Appendix C.3.
Map(
 Multiply(
 PositionAffine\(\theta_1\)(\(x_t\)),
 DistanceAffine\(\theta_2\)(\(x_t\)))) \(x\)

SlideWindowAvg(Add(
 Multiply(LegsAffine\(\theta_1\)(\(x_t\)),
 LegsAffine\(\theta_2\)(\(x_t\)))) \(x\)

Figure 6: Synthesized Programs for Crim13-sniff (left) and SK152-10 actions (right).

Table 2: Ablation study on the importance of node sharing and progressive graph unfolding as two optimization strategies in dPads. All results are reported as the average of runs on five random seeds. Costs of time are set in minutes. OOM represents an out-of-memory error.

<table>
<thead>
<tr>
<th>Variants of dPads</th>
<th>Crim13-sniff</th>
<th>Fly-vs-fly</th>
<th>Bball-ballhandler</th>
<th>SK152-10 actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F_1)</td>
<td>Acc. Time</td>
<td>(F_1)</td>
<td></td>
</tr>
<tr>
<td>dPads w/o Node Sharing</td>
<td>.453</td>
<td>.800</td>
<td>334.93</td>
<td></td>
</tr>
<tr>
<td>dPads w/o Graph Unfolding</td>
<td>.449</td>
<td>.818</td>
<td>280.67</td>
<td>OOM</td>
</tr>
<tr>
<td>dPads in full</td>
<td>.458</td>
<td>.812</td>
<td>147.87</td>
<td></td>
</tr>
</tbody>
</table>

4.4 Ablation Studies

We introduce two more baselines to study the importance of node sharing and progressive graph unfolding. The first baseline does not use node sharing to reduce the size of a program derivation graph but still performs progressive graph unfolding. The second baseline directly expands a program derivation graph to the maximum depth but still applies node sharing. We report the comparison results over 5 random runs in Table 2. Without the two optimizations, limited by the size of GPU memory, dPads may either time-out or encounter out-of-memory error when searching programs that need deep structures to ensure high accuracy. This is because the size of a program derivation graph grows exponentially large with the height of program abstract syntax trees and the number of DSL production rules. Moreover, while being more complete, training without these two optimizations does not necessarily produce better results even when there is no memory error or timeout. On Basketball, dPads achieves .945 \(F_1\) score. dPads without progressive graph unfolding only obtains .848 \(F_1\) score. We suspect this is because the program derivation graph without top-\(N\) preservation and progressive unfolding is more difficult to train as it contains significantly more parameters.

We further investigate the effect of the top-\(N\) preservation strategy in program architecture synthesis (Sec. 3.2) and its impact on searching optimal programs (Sec. 3.3). We set \(N\) to 1, 2, 3 respectively and study how dPads responds to these changes. Table 3 summarizes the average results of \(F_1\) scores, accuracy rates, time costs, and the standard deviations of these results. When \(N = 1\), dPads extracts final programs greedily from optimized program derivation graphs without conducting further search. There is a significant decrease in time consumption compared with \(N = 2\). However, dPads in this condition achieves less \(F_1\) scores and the results have higher variances, which suggests that architecture weights learned using only differentiable synthesis overfit to sub-optimal programs. dPads gets similar \(F_1\) scores when setting \(N = 3\) compared to \(N = 2\) but consumes more time as \(N = 3\) incurs much larger search spaces. It even times-out on the Basketball dataset while searching an optimal program from the converged program derivation graph. This result confirms that scaling discrete program search to large architecture search spaces is challenging. dPads addresses this fundamental limitation by leveraging differentiable search of program architectures to significantly prune away unlikely search directions. Therefore, it suffices to set \(N = 2\) in our experiments to balance search optimality and efficiency. Additional ablation study results are given in Appendix C.4.

We discuss the limitations of dPads in Appendix D.1.

5 Related Work

Program Synthesis. Tasks in program synthesis aim to search for programs in a DSL to satisfy a specification over program inputs and outputs. There is also a growing literature on applying deep learning methods to guide the search over program architectures [6, 26, 34]. There exist efforts that extend this line of research to program synthesis from noisy data [1, 2, 35–37, 3, 4]. These approaches either require a detailed hand-written program template or simply enumerate the discrete
Table 3: Ablation study on the value of N for the top-N preservation strategy used in dPads. All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

<table>
<thead>
<tr>
<th>N</th>
<th>F_1</th>
<th>Acc.</th>
<th>Time</th>
<th>Std. F_1</th>
<th>Std. Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.272</td>
<td>.627</td>
<td>50.85</td>
<td>.111</td>
<td>.218</td>
</tr>
<tr>
<td>2</td>
<td>.458</td>
<td>.812</td>
<td>147.87</td>
<td>.014</td>
<td>.008</td>
</tr>
<tr>
<td>3</td>
<td>.450</td>
<td>.811</td>
<td>441.12</td>
<td>.025</td>
<td>.008</td>
</tr>
<tr>
<td>1</td>
<td>.769</td>
<td>.716</td>
<td>95.36</td>
<td>.052</td>
<td>.062</td>
</tr>
<tr>
<td>2</td>
<td>.887</td>
<td>.853</td>
<td>348.25</td>
<td>.010</td>
<td>.006</td>
</tr>
<tr>
<td>3</td>
<td>.866</td>
<td>.818</td>
<td>620.48</td>
<td>.017</td>
<td>.039</td>
</tr>
<tr>
<td>1</td>
<td>.808</td>
<td>.785</td>
<td>41.14</td>
<td>.042</td>
<td>.045</td>
</tr>
<tr>
<td>2</td>
<td>.945</td>
<td>.939</td>
<td>174.68</td>
<td>.004</td>
<td>.004</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>> 1440</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>.310</td>
<td>.310</td>
<td>40.34</td>
<td>.020</td>
<td>.024</td>
</tr>
<tr>
<td>2</td>
<td>.337</td>
<td>.337</td>
<td>162.70</td>
<td>.017</td>
<td>.017</td>
</tr>
<tr>
<td>3</td>
<td>.336</td>
<td>.338</td>
<td>609.14</td>
<td>.011</td>
<td>.010</td>
</tr>
</tbody>
</table>

space of program architectures permitted by a DSL. Additionally, most of these literature methods build models that are trained using corpora of synthesis problems and solutions, which are not available in our setting. The most closest work to our technique includes [38, 7] that enumerate the space of program architectures prioritizing search directions with feedback from machine learning models. Specifically, Lee et al. [38] uses a probabilistic model (trained from a synthesis problem corpus) to guide an A^* search over discrete program syntax trees and NEAR [7] uses neural networks to approximate missing expressions in a partial program whose F_1 score serves as an admissible heuristic to guide an A^* search again over discrete program syntax trees. As opposed to these efforts, our method more efficiently conducts program synthesis in a continuous relaxation of the discrete space of language grammar rules and only searches the optimal program in a much reduced search space after differentiable architecture synthesis for addressing the gradient bias problem [14].

6 Conclusions

This paper presents a novel differentiable approach to program synthesis. With gradient descent, our method learns the probability distribution of program architectures induced by the context-free grammar of a DSL in a continuous relaxation of the discrete space of language grammar rules. This allows the synthesis algorithm to efficiently prune away unlikely program derivations to discover optimal program architectures. We have instantiated differentiable program architecture synthesis with effective optimization strategies including node sharing and progressive graph unfolding, scaling it to real-world sequence classification tasks. Experiment results demonstrate that our algorithm substantially outperforms state-of-the-art program learning approaches.

Programmatic models in high-level DSLs are a powerful abstraction for summarizing discovered knowledge from data in a human-interpretable way. Programmatic models incorporate inductive bias through structured symbolic primitives in a DSL and open opportunities for programmers to influence the semantic meaning of learned programs. However, the programming biases in a DSL may also leave opportunities to attack on the security and fairness of a learned model. One direction for future work is to apply formal program reasoning to enhance the trustworthiness of programmatic models.
Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their comments and suggestions. This work was supported by NSF Award #CCF-2124155 and the DARPA Symbiotic Design for Cyber Physical Systems program.

References

A Optimality of the search procedure in Algorithm

In Algorithm[1] once we have an optimized program derivation graph G, due to the top-N preservation strategy, each node retains a small number of partial architectures. Algorithm[1] maintains a queue Q of program derivation graphs that is initialized to $\{G\}$. The algorithm dequeues one graph q from Q and extracts the top-most and left-most node u of q that contains more than one partial architecture for search. It enumerates each available partial architecture $f_k^u(\alpha_1^u,k, \ldots, \alpha_n^u,k)$ on u and computes an s-score for each option of retaining only f_k^u on u, denoted as $q[u/f_k^u]$. We define

$$ s(q[u/f_k^u]) = g(q[u/f_k^u]) + h(q[u/f_k^u]) $$

The $g(q[u/f_k^u])$ function measures the structure cost of expanding the initial nonterminal up to u and $h(q[u/f_k^u])$ is an ϵ-Admissible heuristic estimate of the cost-to-go from node u. For A^* search:

$$ h(q[u/f_k^u]) = 1 - F_1(T_{w^*,\theta^*}[u/f_k^u], D_{val}) $$

where $w^*, \theta^* = \arg \min_{w,\theta} \mathbb{E}_{i_k,o_k \sim D} [\ell(T_{w,\theta}[u/f_k^u], o_k)]$ (4)

where T encodes the program derivation graph q itself via Equation (3) as a differentiable program whose output is weighted by the output of all complete programs included in q, w and θ are the sets of architecture weights and unknown program parameters in the subgraph rooted at u in $q[u/f_k^u]$. The h function fine-tunes these trainable variables using the training dataset D to provide informed feedback on the contribution to program quality of the choice of retaining f_k^u on node u, measured by F_1 score. In practice, to avoid overfitting, we use a separate validation dataset D_{val} to obtain the F_1 score. After computing the quality score s, we add $q[u/f_k^u]$ back to the queue Q sorted based on s-scores. The search algorithm completes when the derivation graph with the least s-score from Q is a well-typed program, i.e. each graph node contains only one valid architecture choice.

We aim to prove that our search algorithm is optimal given the admissible heuristic function h. When multiple solutions exist in G (when the top-N parameter is greater than 1), the algorithm finds an optimal solution. Among all the programs contained in G, the synthesized program optimally balances program accuracy and structure complexity.

We note that our search algorithm is a variant of A^* search by interpreting $g(q[u/f_k^u])$ as cost-so-far and $h(q[u/f_k^u])$ as heuristic cost-to-go. A^* search is optimal given admissible heuristics. We shows that under heuristics that are ϵ-admissible, our search algorithm returns solutions that at most an additive constant ϵ away from the optimal solution.

Firstly, we prove that our heuristic function h is ϵ-admissible. Let a completion of a partial architecture $q[u/f_k^u]$ be a (complete) architecture $\hat{q}[u/f_k^u]$ obtained by retaining only one partial architecture on any node of q. The cost-to-go at $q[u/f_k^u]$ is given by:

$$ J(q[u/f_k^u]) = \min_{\hat{q}[u/f_k^u]} c(\hat{q}[u/f_k^u]) - c(q[u/f_k^u]) + 1 - F_1(\hat{q}[u/f_k^u], D_{val}) $$

where the structural cost $c(q)$ is the sum of the costs of the grammatical rules used to construct q excluding any nodes with more than 1 partial architectures (i.e. unexplored nodes in search).

The optimization in Equation (4) may only converge to a local minimum. However, since our relaxation of the search space for Equation (4) includes any possible program permitted by q, there must exist architecture weights w^* and program parameters θ^* such that

$$ \forall \hat{q}[u/f_k^u], 1 - F_1(T[u/f_k^u], w^*, \theta^*, D_{val}) \leq 1 - F_1(\hat{q}[u/f_k^u], D_{val}) + \epsilon $$

Thus we have:

$$ h(q[u/f_k^u]) \leq 1 - F_1(T[u/f_k^u], w^*, \theta^*, D_{val}) $$

$$ \leq \min_{\hat{q}[u/f_k^u]} c(\hat{q}[u/f_k^u]) - c(q[u/f_k^u]) + 1 - F_1(\hat{q}[u/f_k^u], D_{val}) + \epsilon $$

$$ \leq J(q[u/f_k^u]) + \epsilon $$

In other words, $h(q[u/f_k^u])$ is ϵ-admissible as for a fixed constant $\epsilon > 0$, h is an ϵ-admissible heuristic function over architectures such that $h(q[u/f_k^u]) \leq J(q[u/f_k^u]) + \epsilon$ for any partial architecture f_k^u on u.

14
Table 4: $F_{S,\theta}(x)$ for the Crim13 dataset.

<table>
<thead>
<tr>
<th>Extract Feature</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>0, 1, 2, 3</td>
</tr>
<tr>
<td>Distance</td>
<td>4</td>
</tr>
<tr>
<td>Distance Change</td>
<td>5</td>
</tr>
<tr>
<td>Velocity</td>
<td>11, 12, 13, 14</td>
</tr>
<tr>
<td>Acceleration</td>
<td>15, 16, 17, 18</td>
</tr>
<tr>
<td>Angle</td>
<td>6, 7, 10</td>
</tr>
<tr>
<td>Angle Change</td>
<td>8, 9</td>
</tr>
</tbody>
</table>

Table 5: $F_{S,\theta}(x)$ for the Fly-vs-fly dataset.

<table>
<thead>
<tr>
<th>Extract Feature</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>17, 25</td>
</tr>
<tr>
<td>Angular</td>
<td>18, 26, 27</td>
</tr>
<tr>
<td>Positional</td>
<td>24, 28</td>
</tr>
<tr>
<td>Ratio</td>
<td>22, 23</td>
</tr>
<tr>
<td>Wing</td>
<td>19, 20, 21</td>
</tr>
</tbody>
</table>

Table 6: $F_{S,\theta}(x)$ for the Basketball dataset.

<table>
<thead>
<tr>
<th>Extract Feature</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball</td>
<td>0, 1</td>
</tr>
<tr>
<td>Offense</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10, 11</td>
</tr>
<tr>
<td>Defence</td>
<td>12, 13, 14, 15, 16, 17, 18, 19, 20, 21</td>
</tr>
</tbody>
</table>

ϵ-Optimality. Based on the ϵ-admissible of heuristic function $h(q[u/f^*_k])$, we prove that the variant of A^* search in Algorithm 1 results in a synthesized program that is at most ϵ away from the optimal solution contained in the search graph. Suppose that Algorithm 1 returns a program P' that does not have the optimal cost C^*. Then there must exist a program derivation graph q^* in the queue Q of Algorithm 1 that contains the architecture of the optimal program P^*. Due to Equation 5 and the fact that Q is sorted, the s-score of P' satisfies:

$$s(P') \leq s(q^*[u^*/f^*]) = g(q^*[u^*/f^*]) + h(q^*[u^*/f^*]) \\ \leq g(q^*[u^*/f^*]) + J(q^*[u^*/f^*]) + \epsilon \\ \leq C^* + \epsilon$$

where u^* is the top-most and left-most node of q^* and f^* is the optimal partial architecture to retain on node u^* to get the optimal program P^*. In other words, we have established an upper bound on the path cost of the returned synthesized program P'.

B Context-free Grammar Details

We use the context-free grammar in Fig. 1 for synthesizing programmatic classifiers for all the datasets in our experiment. For each dataset, similar to NEAR [7], we customize parameterized functions $F_{S,\theta}(x)$ that extract a vector consisting of a predefined subset S of the dimensions of an input data item x and pass the extracted vector through a linear function with trainable parameters θ. We disclose the details of $F_{S,\theta}(x)$ for each dataset below.

Crim13 Dataset. As shown in Table 4 we define 7 feature extraction functions $F_{S,\theta}(x)$ for the Crim13 Dataset. For location information, XY positions of a pair of mice and the distance between them are recorded. Additionally, distance change measures the distance difference for each two consecutive frames. To track movement information, velocity and acceleration of a pair of mice are extracted in X and Y dimensions respectively. Besides, we also include the information on angle and angle change. The former contains the two relative directions between a pair of mice (one for mouse 1 relative to mouse 2, another for mouse 2 relative to mouse 1) and the difference between the two relative directions. Angle change represents the change of the two relative directions over time. More information on the dimensions of this dataset can be found in [20].

Fly-vs-fly Dataset. Table 5 shows the feature functions $F_{S,\theta}(x)$ we extract for the Fly-vs-fly dataset. Although the feature vectors of the dataset have 53 dimensions, we find the 5 feature functions in the table are sufficient to obtain high accuracy and F_1-scores. The linear feature function captures the values of velocity and distance between two flies. The Angular feature function extracts the value of angle velocity, relative angle between flies and facing angle of each fly. The feature function Positional captures the distance over a relative object and fly legs. The feature function ratio extracts the body ratio of two flies. The feature function wing extracts the angles and lengths of fly wings.
Table 7: $F_{S,\theta}(x)$ for the SK152 dataset.

<table>
<thead>
<tr>
<th>Extract Feature</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms</td>
<td>2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Legs</td>
<td>8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24</td>
</tr>
<tr>
<td>Faces</td>
<td>0, 1, 15, 16, 17, 18</td>
</tr>
</tbody>
</table>

Table 8: Dataset details

<table>
<thead>
<tr>
<th>Dataset</th>
<th>feature dim.</th>
<th>category num.</th>
<th>max seq. len.</th>
<th># train</th>
<th># valid</th>
<th># test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crim13</td>
<td>19</td>
<td>2</td>
<td>100</td>
<td>12404</td>
<td>3077</td>
<td>2953</td>
</tr>
<tr>
<td>Fly-vs-fly</td>
<td>53</td>
<td>7</td>
<td>300</td>
<td>5341</td>
<td>629</td>
<td>1050</td>
</tr>
<tr>
<td>Basketball</td>
<td>22</td>
<td>6</td>
<td>25</td>
<td>18000</td>
<td>2801</td>
<td>2693</td>
</tr>
<tr>
<td>SK152</td>
<td>75</td>
<td>10</td>
<td>100</td>
<td>8721</td>
<td>2184</td>
<td>892</td>
</tr>
</tbody>
</table>

Basketball Dataset. As shown in table 6, we define three feature extraction functions for the Basketball dataset, extracting the positions of the basketball, 5 offensive players, and 5 defensive players. All positions are expressed in X and Y coordinates.

SK152 Dataset. This dataset uses a total of 25 points to capture human skeletons. Each point is recorded using XYZ coordinates. We define three customized feature functions arms, legs and face, each of which extracts a subset of the 25 features.

C Experiment Details

We provide more details about our experiment in this section.

C.1 Training Details

Datasets. Table 8 gives the full details of the four datasets used for evaluation. NEAR [7] does not release the Fly-vs-fly and Basketball datasets used to obtain the results in its paper. We sample these datasets following the guidance provided in [7]. Therefore, the datasets used in the evaluation of this paper are not completely equivalent to that of [7].

Structure Cost. To penalize complex program architectures, we implement the structure cost function g similar to NEAR [7]. Let each grammar rule r have a non-negative real-valued cost $c(r)$. The structural cost of a (partial) architecture is the sum of the costs of the multi-set of rules used to create the architecture.

$$g(q[u/f_u^c]) = \beta \cdot \sum_{r \in q[u/f_u^c]} c(r)$$

Importantly, the above formula only counts the grammar rules used to expand the initial nonterminal up to node u (recall that u is the top-most and left-most node of q that contains more than one partial architecture i.e. unexplored nodes are excluded). To balance the structure cost and performance of a programmatic classifier, we set the cost penalty parameter β to be 0.01 for both dPads and NEAR. In practice, we set $c(r) = 1$ for any grammar rule r. For a complete program, the g function essentially counts the number of grammar rules used to derived the program (timed with β).

C.2 Hyperparameters

RNN Baseline. The RNN baseline policies are 1-layer LSTMs. Table 9 introduces the hyperparameters used for training the RNN baselines. In general, the RNN baselines perform better than the synthesized programmatic classifiers because their richer structures allow for better data fitting at the cost of less interpretability. In the experiments, we use the cross-entropy loss to optimize classifier accuracy for both dPads and baselines.

Several other baselines that we considered include (1) Top-down enumeration that synthesizes and evaluates complete programs in order of increasing complexity measured using the structural cost, (2) Monte-Carlo sampling that constructs complete programs by sampling rules (edges) with
Table 9: Hyperparameters set for the RNN baseline.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># LSTM units</th>
<th># epochs</th>
<th>learning rate</th>
<th>batch size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crim13</td>
<td>100</td>
<td>50</td>
<td>0.001</td>
<td>50</td>
</tr>
<tr>
<td>Fly-vs-fly</td>
<td>80</td>
<td>40</td>
<td>0.00025</td>
<td>30</td>
</tr>
<tr>
<td>Basketball</td>
<td>64</td>
<td>15</td>
<td>0.01</td>
<td>50</td>
</tr>
<tr>
<td>SK152</td>
<td>75</td>
<td>30</td>
<td>0.01</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 10: Hyperparameters set for Differentiable Architecture Search and Selection in dPads.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Architecture Search</th>
<th>Architecture Selection</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>learning rate</td>
<td>graph_epoch</td>
<td>prog_epoch</td>
</tr>
<tr>
<td>Crim13</td>
<td>0.001</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fly-vs-fly</td>
<td>0.0005</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Basketball</td>
<td>0.001</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>SK152</td>
<td>0.01</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

probabilities proportional to their structural costs where the next node to expand along a path has the
best average performance of samples that descended from that node, (3) Monte-Carlo tree search
(MCTS) that traverses the search graph of programs using the UCT selection criteria, where the value
of a node is inversely proportional to the cost of its children, and (4) Genetic algorithm that uses
crossover, selection, and mutation operations to evolve a population of programs over a number of
generations. Unlike dPads, these baselines perform program architecture search in the discrete space
df dSL grammar rules. We do not include these baselines in the experiment section because NEAR
significantly outperforms them [7]. Therefore, it suffices to compare dPads solely with NEAR.

dPads. In the evaluation of dPads, we set graph expansion depth \(d_s \) (a parameter of Algorithm 1) as
2 for all the four datasets. NEAR uses the number of grammar production rules applied to construct a
program to upper-bound the search space for program learning. The largest number of production
rules allowed for a synthesized program is 8 in NEAR. Instead, we set the max depth of the abstract
syntax tree of a dPads’s synthesized program as 4. Compare to the search space of NEAR, some
programs included in the search space of dPads even need more than 10 production rules to expand
from the initial nonterminal.

For top-\(N \) preservation in a program derivation graph, the goal is to retain top-\(N \) program architec-
tures as children for each partial architecture on the node’s parent, which are defined to be those
assigned with higher weights on the node’s incoming edge in the previous graph unfolding iteration.
We set \(N = 2 \) in our experiments. In practice, we find that a heuristic strategy that iteratively prunes
candidate partial architectures on a program derivation graph node and fine-tunes the derivation
graph at then end of each iteration is more efficient than directly retaining top-\(N \) architectures. In a
graph unfolding iteration, after optimizing the architecture weights and unknown program parameter
over an entire program derivation graph for several epochs until the increase of the \(F_1 \) score of the
whole graph is less than 1%, on each node we retain 4 program architectures as children for each
partial architecture on the node’s parent, then we retrain the program derivation graph for several
epochs again until the increase of \(F_1 \) score is less than 1% and on each node we retain 3 program
architectures for each partial program architectures on the node’s parent, and finally we apply such
a process again to retain only 2 program architectures to get the desired top-2 preservation in the
program derivation graph.

Table 10 presents the hyperparameters used to train dPads programmatic models. The learning
rates for differentiable architecture search on a program derivation graph and architecture selection
from the converged program derivation graph may be different. For architecture selection, the
number of graph_epoch refers to the number of epochs that is used to optimize the heuristic function
\(h \) (Equation 4) when a program derivation graph has nodes containing more than one candidate
architectures. Here we need to optimize both architecture weights and program parameters. The
number of prog_epoch refers to the number epochs that is used to fine-tune the accuracy of a program
derivation graph when every node of the graph contains exactly one architecture, i.e., the graph is the
abstract syntax tree of a valid program. For Crim13 and Fly-vs-fly, both graph_epoch and prog_epoch
are set to 6. For Basketball and SK152, graph_epoch is set to 4 and prog_epoch is set to 6.
C.3 Additional Experiment Results

Search Space Reduction. Fig. 7 quantifies the program derivation graph reduction by node sharing and progressive unfolding. We show for each benchmark the number of nodes, the total number of partial architectures (DSL functions) hosted by the nodes, and the total number of architecture weights to train on its program derivation graph. We only show the results of the deepest program derivation graph generated by dPads on each benchmark. Notice that dPads without progressive graph unfolding and dPads without node sharing generate program derivation graphs that are significantly larger.

On Fly-vs-fly, without progressive graph unfolding, the program derivation graph has 33 nodes shared by 485 partial architectures, and a total of 1021 architecture weights to train. Directly applying dPads to train under this setting encounters an out-of-memory (OOM) exception (Table 2). In contrast, with progressive graph unfolding, the deepest graph generated by dPads has only 21 nodes shared by 220 partial architectures, and a total of 370 architecture weights to train. dPads converges in less than 360 mins (Table 2).

On Basketball, without node sharing, the deepest program derivation graph generated by dPads has 94 nodes hosting 302 partial architectures, and a total of 301 architecture weights to train. If directly running dPads under this setting, the search procedure (Sec. 3.3) times-out (Table 2). In contrast, with node sharing, the program derivation graph reduces to only 29 nodes shared by 152 partial architectures, and a total of 259 architecture weights to train. dPads converges in less than 180 mins (Table 2).

Program Sizes. Table 11 reports the number of grammar rules used to construct synthesized programs for each benchmark. Compared with NEAR, dPads tends to synthesize more complex programs that are necessary to ensure higher F_1 scores.

On Fly-vs-fly, although NEAR runs faster, it only finds programs derived by 2.8 production rules but dPads finds much deeper programs derived by 6.8 production rules. Consequently, for this benchmark, dPads achieves much higher accuracy and F_1 scores. A similar trend can be observed for the results on Crim13 and SK152. dPads learns program classifiers for Crim13 constructed using 10.2 grammar rules averagely. These classifiers achieve an average of 0.46 F_1 scores (on the test dataset). The shallower classifiers learned by NEAR achieve an average of 0.33 F_1 scores constructed by 5.8 grammar rules averagely. While the dPads classifiers are more complex, the total s-scores of dPads classifiers $(1 - F_1(p, D_{val}) + \beta \cdot \sum_{r \in AST(p)} c(r))$ where p is a classifier, i.e. synthesized programs' classification error plus architecture cost (the search objective), are still lower than that of the programs learned by NEAR. In other words, dPads better balances structure costs and performance. On Basketball, both tools find programs with 8 production rules. In this case, the architecture spaces searched by the two tools are roughly equivalent, but dPads is 3 times faster.

The experiment results consistently demonstrate that dPads’s gradient-based architecture search is much more efficient than NEAR’s enumeration-based strategy. Moreover, NEAR uses neural models to estimate the performance of a partially expanded program. Our experiments find that due to overfitting or underfitting, such a neural model may be biased on a particular program. For example, on Fly-vs-fly, due to the biased estimation, NEAR stops searching the architecture space deeper than that contains programs derived by only 2.8 production rules. In contrast, (1) dPads uses a

Figure 7: Results of quantifying the number of graph nodes, the total number of partial architectures (DSL functions) hosted by the nodes, and the total number of architecture weights on graph edges on program derivation graphs generated by dPads and its variants for each of the datasets.
Table 11: The average numbers of grammar rules (#R) used to construct synthesized programs together with the programs’ F_1 scores. All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

<table>
<thead>
<tr>
<th></th>
<th>Crim13-sniff</th>
<th>Fly-vs-fly</th>
<th>Bball-ballhandler</th>
<th>SK152-10 actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1</td>
<td>#R</td>
<td>Time</td>
<td>F_1</td>
</tr>
<tr>
<td>A*-NEAR</td>
<td>.286</td>
<td>6.8</td>
<td>164.92</td>
<td>.828</td>
</tr>
<tr>
<td>IDS-BB-NEAR</td>
<td>.323</td>
<td>5.8</td>
<td>463.36</td>
<td>.822</td>
</tr>
<tr>
<td>dPads</td>
<td>.458</td>
<td>10.2</td>
<td>147.87</td>
<td>.887</td>
</tr>
</tbody>
</table>

Table 12: Standard deviations of F_1 scores, accuracy rates, and the number of grammar rules used to construct synthesized programs. All results are reported as the average of runs on five random seeds.

<table>
<thead>
<tr>
<th></th>
<th>Crim13</th>
<th>Fly-vs-fly</th>
<th>Basketball</th>
<th>SK152</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1</td>
<td>Acc. Rules</td>
<td>F_1</td>
<td>Acc. Rules</td>
</tr>
<tr>
<td>A*-NEAR</td>
<td>.107</td>
<td>.007</td>
<td>.025</td>
<td>.016</td>
</tr>
<tr>
<td>IDS-BB-NEAR</td>
<td>.086</td>
<td>.008</td>
<td>.030</td>
<td>.025</td>
</tr>
<tr>
<td>dPads</td>
<td>.013</td>
<td>.008</td>
<td>.011</td>
<td>.006</td>
</tr>
</tbody>
</table>

subprogram derivation graph to estimate the performance of a partially expanded program that can provide more accurate assessment due to the graph’s syntax resemblance to a valid program; (2) dPads only uses neural models to provide “contrastive” performance estimation for a set of programs sharing nodes in a program derivation graph when progressively unfolding the graph. As a result, on Fly-vs-fly, dPads searches the architecture space much deeper containing programs derived by 6.8 production rules. Even dPads typically searches much deeper, it often runs faster than NEAR.

Standard Deviations. We present the standard deviations of accuracy, F_1-scores, and numbers of production rules used to construct learned programs in Table 12. The results confirms the observation in [7] that NEAR has a higher variance in F_1 scores for CRIM13. dPads is more stable on this dataset.

Further Comparison with NEAR. In the comparison with NEAR, we obtain the NEAR results following the hyperparameters defined in [7]. The only exception is that for Crim13 and Fly-vs-fly, we modify the batch size for NEAR program learning to be 200 while keeping the other hyperparameters unmodified to get the results. This is for ensuring a fair comparison of running times with dPads that sets batch size to 200. In this section, we report the results of NEAR on Crim13 and Fly-vs-fly using exactly the same hyperparameters as reported in [7], setting batch size to 50 and 30 respectively, and show the results in Table 13. In this setting, A*-NEAR and IDS-BB-NEAR get higher F_1 scores that are, however, still lower than that of dPads. Moreover, NEAR costs significantly longer time in search. Thus, dPads outperforms NEAR in this setting as well.

Comparison with Enumerative Program Synthesis. Besides comparing with NEAR and RNN (as in Table 1), we also compared dPads with an enumeration strategy that synthesizes and evaluates complete programs in order of increasing complexity. This strategy is widely used in program synthesis tasks. We set the running time of the enumeration strategy twice as long as dPads’s synthesis time. As shown in Table 14, dPads outperforms enumeration strategy on all benchmarks. Although enumeration gets higher accuracy on Crim13, it underfits this unbalanced dataset as the F_1 score is much lower than dPads. We have also tried a Monte-Carlo tree search strategy but found that its performance is even worse than the simple enumeration strategy on our benchmarks.

C.4 Additional Ablation Study Results

Other than top-N preservation and progressively unfolding program derivation graphs, we explored other pruning approaches, including reserving the top-N programs across the entire search graph. We also considered another pruning algorithm which we refer to as First Compare First Unfold (FCFU). Unlike dPads that separates top-N preservation and progressive graph unfolding with the search algorithm in Sec. 3.3, FCFU mixes the two optimizations with the search procedure. It manages a priority queue of program derivation graphs that is initialized to the simplest graph with the initial nonterminal only. After training converges on a program derivation graph from the priority queue, FCFU decomposes the graph into several sub graphs by separating the co-adapted architectures on
Table 13: Experiment results of NEAR following the exact hyperparameter setting specified in [7]. All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

<table>
<thead>
<tr>
<th></th>
<th>Crim13-sniff</th>
<th>Fly-vs-fly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1 Acc. Time(mins)</td>
<td>F_1 Acc. Time(mins)</td>
</tr>
<tr>
<td>A*-NEAR</td>
<td>.304 .824 519.60</td>
<td>.873 .827 1208.92</td>
</tr>
<tr>
<td>IDS-BB-NEAR</td>
<td>.328 .840 1106.28</td>
<td>- - > 1440</td>
</tr>
<tr>
<td>dPads</td>
<td>.458 .812 147.87</td>
<td>.887 .853 348.25</td>
</tr>
</tbody>
</table>

Table 14: Experiment results on comparing dPads with an enumeration-based synthesis strategy. The running time of the enumeration strategy is set twice as long as the synthesis time of dPads. All results are reported as the average of runs on five random seeds. Costs of time are set to minutes.

<table>
<thead>
<tr>
<th></th>
<th>Crim13-Fly-vs-fly-Basketball-SK152</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1 Acc.</td>
</tr>
<tr>
<td>Enumeration</td>
<td>.294 .856</td>
</tr>
<tr>
<td>dPads</td>
<td>.458 .812</td>
</tr>
</tbody>
</table>

Table 15: Ablation study on various pruning methods. All results are reported as the average of runs on five random seeds. Costs of time are set to minutes. The top-left most compound node on the graph. On each sub graph, that node contains only one available architectures. These partitions are pushed back to the queue after fine-tuning (similar to dPads). Once a graph with each node containing at most one architecture is obtained from the queue as the least cost, we immediately unfold the graph into deeper levels and push it back to the queue unless the maximum depth is reached. FCFU prioritizes to unfold the best partial program observed so far. We compared dPads with FCFU and top-N programs over 5 random runs. The results are shown in Table 15.

<table>
<thead>
<tr>
<th></th>
<th>Crim13</th>
<th>Fly-vs-fly</th>
<th>Basketball</th>
<th>SK152</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1 Acc. Time</td>
<td>F_1 Acc. Time</td>
<td>F_1 Acc. Time</td>
<td>F_1 Acc.</td>
</tr>
<tr>
<td>top-5 programs</td>
<td>.299 .516 184.16</td>
<td>.652 .554 153.28</td>
<td>.848 .829 30.39</td>
<td>.283 .277 62.04</td>
</tr>
<tr>
<td>FCFU</td>
<td>.456 .813 489.53</td>
<td>.889 .853 606.65</td>
<td>- - > 1440</td>
<td>.338 .339 319.60</td>
</tr>
<tr>
<td>dPads</td>
<td>.458 .812 147.87</td>
<td>.887 .853 348.25</td>
<td>.945 .939 174.68</td>
<td>.337 .337 162.70</td>
</tr>
</tbody>
</table>

It can be seen that dPads outperforms top-N programs where N is set to 5, achieving higher accuracy and F_1 scores. This is because top-N programs tends to excessively detach many valid DSL functions from graph nodes (especially when N is small), leading to suboptimal final programs. FCFU achieves comparable accuracy and F_1 scores with dPads but runs significantly slower than dPads. It even times-out on the Basketball dataset. This is because FCFU only unfolds one best partial program each time, causing the search queue to grow exponentially longer with graph decomposition. In contrast, dPads maintains a set of high-quality programs via top-N preservation on nodes and simultaneously expands all of these programs via progressive graph unfolding.

C.5 Program Examples

We show more synthesized programs by dPads for the four datasets below.

Crim13. The following is a programmatic classifier learned for Crim13.

```map
if AccelerationAffine_{\theta_1}(x_t) \geq 0
    then if PositionAffine_{\theta_2}(x_t) \geq 0
        then PositionAffine_{\theta_3}(x_t)
        else VelocityAffine_{\theta_4}(x_t)
    else Multiply(DistanceAffine_{\theta_5}(x_t), DistanceAffine_{\theta_6}(x_t)) x
```

In the program, AccelerationAffine, DistanceAffine, PositionAffine, and VelocityAffine are functions that first select the parts of the input that represent acceleration, distance, position, and velocity.
measurements, respectively, and then apply affine transformations with parameters θ to the resulting vectors. The program contains a nested if-then-else (ITE) operation conditioned on the acceleration of two mice. Our interpretation of the program is that if the difference between the accelerations of two mice is small, in the first else branch, they are doing “sniff” if the two mice are close to each other without obvious movements (i.e. the multiplication of their distance is small); otherwise, in the first then branch, the program evaluates the likelihood of “sniff” by applying a position bias, then using the velocity of the mice if the mice are close together and not moving fast, and using distance between the mice otherwise.

We show another programmatic classifier learned for Crim13 below:

$$\text{MapPrefixes (}
\text{Fold (}
\text{if DistanceAffine}_{\theta_1}(x_t) \geq 0 \\
\text{then PositionAffine}_{\theta_2}(x_t) \\
\text{else PositionAffine}_{\theta_3}(x_t))) x$$

This program has a simpler architecture compared with the one above but has a higher F_1 score (0.468 vs. 0.456) that is comparable to the RNN baseline (vs. 0.481). It exploits the distance and the position bias between two mice to evaluate if they are doing “sniff”.

Fly-vs-fly. We draw two programmatic classifiers for Fly-vs-fly with similar structures below. Both

$$\text{Fold (}
\text{Add (PositionAffine}_{\theta_1}(x_t), \\
\text{WingAffine}_{\theta_2}(x_t), \\
\text{RatioAffine}_{\theta_3}(x_t))) x$$

$$\text{Fold (}
\text{Add (AngularAffine}_{\theta_1}(x_t), \\
\text{WingAffine}_{\theta_2}(x_t), \\
\text{Add (RatioAffine}_{\theta_3}(x_t), \\
\text{RatioAffine}_{\theta_4}(x_t))) x$$

programs consider the wing and the body ratio features of fruit flies for classification. The left program further extracts the position information and gets a high F_1 score 0.904 while the right program extracts the fly angle velocity and relative facing angle information that results in a lower F_1 score 0.888. The better performance of the left program suggests that the position information of flies is more crucial than the angle features to classify their actions.

SK152. For SK152, we show a learned programmatic classifier that is more complex compared with the one depicted in the main paper.

$$\text{SlideWindowAvg (}
\text{Add (}
\text{if ArmsXYZAffine}_{\theta_1}(x_t) \geq 0 \\
\text{then ArmsXYZAffine}_{\theta_2}(x_t) \\
\text{else ArmsXYZAffine}_{\theta_3}(x_t), \\
\text{if LegsXYZAffine}_{\theta_4}(x_t) \geq 0 \\
\text{then FaceXYZAffine}_{\theta_5}(x_t) \\
\text{else LegsXYZAffine}_{\theta_6}(x_t))) x$$

This program applies a sliding window to a trajectory for classification and sums the results of two ITE operations inside the window. The first ITE operation focuses on human arm behaviors and the second ITE operation leverages either face movements or leg movements based on the behavior of human legs. The program results in an F_1 score of 0.336 and an accuracy of 0.337.

Basketball. The program synthesized for Basketball to classify the ballhandler is shown below.

$$\text{Map (}
\text{Multiply (}
\text{Add (BallXYAffine}_{\theta_1}(x_t), \text{OffenseXYAffine}_{\theta_2}(x_t)), \\
\text{Add (OffenseXYAffine}_{\theta_3}(x_t), \text{BallXYAffine}_{\theta_4}(x_t)))) x$$

In the program, OffenseXYAffine and BallXYAffine are parameterized affine transformations over the XY-coordinates of the offensive players and the ball. The program structure can be interpreted as computing the distance between the offensive players and the ball to determine the ballhandler. As
we aim to recognize the offensive player who holds the basketball, it suffices to only consider the ball positions and the offensive players (excluding the information on defensive players). This program gets a F_1 score of 0.945 and an accuracy of 0.939.

C.6 Generalizability

In the paper, we illustrate dPads by focusing on sequence classification. However, dPads is a general program synthesis algorithm and is not limited to sequence classification.

Fig. 8 depicts a high-level framework of dPads. Other than training data, dPads takes as input a DSL, the semantics of the DSL, and a cost model of each production rule in the DSL. Importantly, dPads requires the DSL’s semantics to be differentiable. This is because dPads performs gradient-based architecture search. To avoid discontinuities in programming constructs such as ITE, we require these constructs to be interpreted in terms of a smooth approximation. As such, the synthesis algorithm in dPads is exactly parameterized by a class of DSLs with differentiable semantics. The context-free grammar in Fig. 1 is such an example. It is straightforward to apply dPads to another DSL with differentiable semantics.

As an example, we demonstrate the generalizability of dPads by applying it to the cryptographic circuit synthesis task in the SyGuS (Syntax-Guided Synthesis) project\[1\]. The goal is to synthesize a side-channel free cryptographic circuit by following given context-free grammar while ensuring that the synthesized circuit is equivalent to the original circuit (a correctness constraint). The grammar is designed to avoid side-channel attacks, whereas the original circuit is created only for functional correctness and thus is vulnerable to such attacks. dPads takes as input a circuit grammar as depicted in Figure. 9. The grammar includes several Boolean operations And, Not, Or and Xor. It also specifies multiple variables (e.g. LN10 and LN30) to be used by the synthesizer to generate a desired program (circuit in this context). In this experiment, we aim to synthesize a program that must be logically equivalent to φ_{spec} (a correctness specification):

\[
\varphi_{\text{spec}} : (((LN30 \text{Xor} LN32) \text{Xor} LN42) \text{Xor} LN10)
\]

Notice that the above program itself cannot be expressed using the above grammar.

In order to apply dPads to such a task, the user of dPads must provide a differentiable DSL semantics. Recall that we have provided a smooth approximation of ITE in Sec. 2. We define a differentiable

\[\text{BinaryCrossentropy}\]
\[\text{CategoricalCrossentropy}\]

Figure 8: A high-level framework of dPads.

Figure 9: Context-free grammar for cryptographic circuit synthesis in the SyGuS project.

\[\alpha_0 \rightarrow \text{And}(\alpha_1, \alpha_1) \mid \text{Not}(\alpha_1) \mid \text{Or}(\alpha_1, \alpha_1) \mid \text{Xor}(\alpha_1, \alpha_1)\]
\[\alpha_1 \rightarrow \text{And}(\alpha_2, \alpha_2) \mid \text{Not}(\alpha_2) \mid \text{Or}(\alpha_2, \alpha_2) \mid \text{Xor}(\alpha_2, \alpha_2) \mid LN10\]
\[\alpha_2 \rightarrow \text{And}(\alpha_3, \alpha_3) \mid \text{Not}(\alpha_3) \mid \text{Or}(\alpha_3, \alpha_3) \mid \text{Xor}(\alpha_3, \alpha_3)\]
\[\alpha_3 \rightarrow \text{And}(\alpha_4, \alpha_4) \mid \text{Not}(\alpha_4) \mid \text{Or}(\alpha_4, \alpha_4) \mid \text{Xor}(\alpha_4, \alpha_4) \mid LN32\]
\[\alpha_4 \rightarrow LN30 \mid LN42\]
\[
\begin{align*}
\text{And}(\alpha_1, \alpha_2)(v) &= \min(\|\alpha_1\|(v), \|\alpha_2\|(v)) \\
\text{Or}(\alpha_1, \alpha_2)(v) &= \max(\|\alpha_1\|(v), \|\alpha_2\|(v)) \\
\text{Xor}(\alpha_1, \alpha_2)(v) &= \|\alpha_1\|(v) + \|\alpha_2\|(v) - 2\|\alpha_1\|(v) \cdot \|\alpha_2\|(v) \\
\text{Not}(\alpha)(v) &= 1 - \|\alpha\|(v) \\
\text{LN10}(v) &= v[\text{LN10}] \\
\text{LN30}(v) &= v[\text{LN30}] \\
\text{LN32}(v) &= v[\text{LN32}] \\
\text{LN42}(v) &= v[\text{LN42}]
\end{align*}
\]

Figure 10: Differentiable semantics for Boolean operations.

semantics for \textbf{And}, \textbf{Not}, \textbf{Or} and \textbf{Xor} similarly in Figure[10]. Given a program \(\varphi\) in the DSL and a Boolean assignment \(v\) as the variables in \(\varphi\), \(\varphi(v)\) is deemed to be \text{True} if \(\|\varphi(v)\|\) is closer to 1 and \(\varphi(v)\) is deemed to be \text{False} if \(\|\varphi(v)\|\) is closer to 0.

dPads constructs a program derivation graph to include each possible program allowed by the grammar. Given a set of input-output examples, it trains the architecture weights of the program derivation graph by minimizing the MSE loss between the graph’s outputs (Equation[3]) and the ground truth outputs. In this example, an input is an assignment to the variables, e.g. \(v = \{\text{LN10} : 0, \text{LN30} : 1, \text{LN32} : 0, \text{LN42} : 1\}\). The corresponding output is whether the input variable assignment \(v\) should be evaluated to 1 (True) or 0 (False). We collect the input-output examples using counterexample-guided inductive synthesis (CEGIS) by iteratively querying an SMT solver (such as \text{Z3}) whether a synthesized program \(\varphi\) is logically equivalent to \(\varphi_{\text{spec}}\). Any counterexample that witnesses the inequivalence of \(\varphi\) and \(\varphi_{\text{spec}}\) is added to the input-output example set. Since the DSL semantics is differentiable, dPads can efficiently learn architecture weights using gradient descent optimization and hence return the best program it synthesizes. For our example, dPads synthesizes the following solution that is verified equivalent to \(\varphi_{\text{spec}}\):

\[
(L\text{N10 Xor} ((L\text{N32 Xor} (L\text{N42 Or} L\text{N30})) Xor ((L\text{N30 Or} L\text{N42}) And (L\text{N30 And} L\text{N42}))))
\]

In our experience, dPads is very efficient in solving the circuit synthesis problem and can reduce the synthesis time from minutes by \text{EUSolve}\footnote{https://github.com/Z3Prover/z3} (an enumerative SyGuS solver) to seconds.

D Additional Discussions

D.1 Limitations

\textbf{Performance gap to RNN.} dPads’s performance does not match the RNN baseline. This is mainly due to the limitations in expressivity imposed by the DSL. Firstly, in the DSL, we only allow for customized feature functions \(F_{S,\theta}(x)\) that extract a vector consisting of a predefined subset \(S\) of the dimensions of an input sequence \(x\) and pass the extracted vector through a linear function with trainable parameters \(\theta\). For example, for Crim13, we redefine feature functions such as the XY positions, angles, velocity, acceleration, distance of a pair of mice, and distance difference for every two consecutive frames. We list the details of \(F_{S,\theta}(x)\) for each dataset in Appendix[B]. These feature functions are extremely helpful to ensure that a synthesized program composed of these functions is interpretable. However, a program limited to these predefined feature functions may be suboptimal as only a subset of features is used. Instead, an RNN policy can understand the whole context of a sequence using all features available from the input. Secondly, for the sake of interpretation, our DSL also predefines a limited set of algebraic operations to process the outputs from the feature functions, as shown in Fig.\cite{fig:synergy}. However, an RNN can use a more expressive activation function to learn about long-term dependencies in data. We have reported the performance limitation of dPads in Table\cite{table:performance}.

\textbf{Program Derivation Graph Accuracy.} Another important limitation is that performance estimation of each program included in a program derivation graph ranked by architecture weights can be
inaccurate due to the co-adaption among partial architectures (node sharing). As one super program derivation graph may not be able to model the entire search space accurately, we have used multiple sub program derivation graphs generated on the fly via a search procedure to address this problem (Section 3.3). Each sub derivation graph models one part of the search space. However, as reported in Table 3, the search method slows down the whole synthesis procedure and may need additional optimization.

D.2 Further Comparison with NEAR

Although dPads and NEAR [7] both formalize program synthesis as a graph search problem, the two techniques are very different. We compare dPads and NEAR in depth as follows.

NEAR. Typically, search-based program synthesizers enumerate the underlying program space in some order and for each program checks whether or not it satisfies the synthesis constraints. It is a challenging problem because the architecture search space is combinatorial. The most simple strategy that starts by searching for programs with 1 DSL production rule and iteratively increases this bound does not scale to complex programs. NEAR uses neural models to approximate unexpanded subexpressions to estimate the likelihood of eventually deriving a high-quality program by choosing a particular production rule. It leverages this kind of information to prioritize promising search directions and hence can greatly accelerate the search process. However, NEAR’s search strategy is still discrete and enumeration-based.

dPads’s Contributions. dPads proposes a new, scalable program synthesis technique. It views program architecture search as learning a probability distribution over all possible program architectures induced by a DSL. Unlike NEAR that enumerates and evaluates each program by training unknown parameters from scratch, dPads reduces the computation cost by training one program, a.k.a. a program derivation graph, to approximate the performance of every program in the search space. It learns the architecture weights of each program encoded in a program derivation graph in a way that ranks the performance estimation of these programs. The search procedure in dPads is more efficient because it supports gradient-based architecture optimization in a novel continuous relaxation of the program architecture search space.

dPads’s Impacts. To the best of our knowledge, dPads is the first program synthesis technique that applies gradient-based architecture search. Experiment results on sequence classification demonstrate that thanks to this strategy, dPads can efficiently search in a deep program space to learn sophisticated programs that are necessary to ensure high F_1 scores.

D.3 Using Neural Networks to Approximate Missing Expressions

Both dPads and NEAR [7] use neural networks to approximate missing expressions of partial architectures. However, the key difference is that dPads does not use neural models to estimate the performance of a partially expanded program. This is because our experiments find that due to overfitting or underfitting, a neural model may be biased on a particular program. In contrast, dPads uses a sub program derivation graph to estimate the performance of a partially expanded program. We find that it can provide more accurate assessment due to the graph’s syntax resemblance to a valid program. This enables dPads to be able to search deeper than NEAR in the program architecture space to synthesize more sophisticated programs that are necessary to ensure higher F_1 scores. For example, on Fly-vs-fly, NEAR’s inaccurate admissible neural heuristics prevent it from searching the architecture space deeper than that contains programs derived by just 2.8 production rules. In contrast, during architecture selection, dPads uses a sub program derivation graph to estimate the performance of a partially expanded program. The sub program derivation graph provides a more accurate assessment. As a result, dPads searches the architecture space much deeper containing programs derived by 6.8 production rules and gets a much higher F_1 score (.887 vs .828).

dPads only uses neural models to provide contrastive performance estimation for a set of programs sharing nodes in a program derivation graph for progressive graph unfolding (Section 3.2). For example, on the Basketball dataset, the architecture spaces searched by the two tools are roughly equivalent. dPads is 3 times faster. This is in part because dPads uses the same set of neural networks to provide contrastive performance estimation for the set of programs sharing nodes and does require the performance estimation on a single program to be accurate. In progressive graph unfolding, this strategy effectively and efficiently prunes away a large set of unlikely search directions.
Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 (b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] Code is shown in Algorithm 1, data and instructions are shown in Section 4.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Section 4 and Appendix.
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] See section 4.3
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [Yes] See citations in section 4
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [Yes] See citations in section 4

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]