
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Safe Exploration in Reinforcement Learning by
Reachability Analysis over Learned Models⋆

Yuning Wang[0009−0000−4317−9758] and He Zhu[0000−0001−9606−150X]

Rutgers University, New Brunswick NJ, USA
{yw895,hz375}@cs.rutgers.edu

Abstract. We introduce VELM, a reinforcement learning (RL) frame-
work grounded in verification principles for safe exploration in unknown
environments. VELM ensures that an RL agent systematically explores
its environment, adhering to safety properties throughout the learning
process. VELM learns environment models as symbolic formulas and
conducts formal reachability analysis over the learned models for safety
verification. An online shielding layer is then constructed to confine the
RL agent’s exploration solely within a state space verified as safe in the
learned model, thereby bolstering the overall safety profile of the RL sys-
tem. Our experimental results demonstrate the efficacy of VELM across
diverse RL environments, highlighting its capacity to significantly reduce
safety violations in comparison to existing safe learning techniques, all
without compromising the RL agent’s reward performance.

Keywords: Controller Synthesis · Reinforcement Learning · Safety Ver-
ification · Safe Exploration.

1 Introduction

Deep reinforcement learning (RL) is a promising approach for synthesizing con-
trollers [19] to govern cyber-physical systems like autonomous vehicles. State-
of-the-art RL algorithms can autonomously acquire motor skills through trial
and error, either in simulated environments or even in unknown terrains, thus
circumventing the need for laborious manual engineering. However, during train-
ing in most RL algorithms, agents perform a significant number of exploratory
steps that can lead to dangerous behavior. In many real-world scenarios where
ensuring high assurance is crucial, it becomes imperative for the RL agent to
behave safely during environment interactions, even in training scenarios when
the agent is not yet optimal [37,43].

To facilitate safe exploration, it is essential to have a mechanism that deter-
mines the safety of executing an action in a given environment state. Several
existing approaches utilize prior knowledge about system dynamics [6,52,5] to
make such assessments. When the environment dynamics are not known a pri-
ori, existing safe RL methods utilize learned predictors in the shape of neural

⋆ This work is supported by the National Science Foundation under grant CCF-
2007799.

https://doi.org/10.5281/zenodo.11124030

2 Yuning Wang and He Zhu

networks [1,15,47,7] to predict the safety implications of particular control ac-
tion. Training these neural predictors may require numerous potentially unsafe
environment interactions.

There are also model-based safe RL techniques that leverage learned envi-
ronment models in unknown environments to filter out unsafe actions [4,34]. In
the recent CRABS framework [34], a barrier certificate and a model for envi-
ronment dynamics are co-trained in conjunction with a controller. The learned
neural barrier certificate serves as a predictive tool to assess whether a control
action from the policy aligns with the safety requirement. In cases where it does
not, a safeguard policy, trained on the environment model, is executed. While
rooted in formal methods concepts, CRABS cannot rigorously verify the accu-
racy of a learned barrier certificate. This challenge arises from the fact that both
the certificate and the underlying environment models are deep neural networks,
making formal verification a complex task. Another recent work SPICE [4] uses
weakest preconditions [16] to generate, from a learned environment model, a
predicate that decides if an action is safe to take at a current environment state
concerning a short time horizon H. However, H cannot be extended to cover
the entire horizon of an RL task, primarily because of the inherent challenge
in constructing precise weakest precondition transformers for neural networks.
As a result, although grounded in Hoare logic, SPICE still suffers from notable
safety violations in its environment exploration.

We present VELM, a model-based safe reinforcement learning framework
that engages in formally verified safe exploration through learned environment
models, covering the entire horizon of an RL task. VELM learns a symbolic envi-
ronment model linking the system’s future states, past states, and the controller’s
actions. Most non-linear control systems are characterized by dynamics dictated
by mathematical equations involving operators such as trigonometric functions
(like sine and cosine) and power functions. By leveraging this prior knowledge of
common operators that could appear in environment dynamics, VELM searches
a symbolic environment model in the space of interpretable mathematical ex-
pressions by symbolic regression techniques. Symbolic regression methods have
demonstrated remarkable extrapolation capabilities in recent studies and have
proven valuable across diverse domains including physics [10,28,30]. More im-
portantly, unlike neural environment models, symbolic environment models are
conducive to long-horizon reachability analysis, enabling the computation of the
reachable set of a control system across the entire task horizon. VELM leverages
this capability to establish a safe exploration regime for verified safe learning.

VELM can be instantiated on top of any model-based reinforcement learn-
ing algorithms. It involves a two-step procedure repeated until convergence: (a)
interact with the true environment to collect a dataset of environment transi-
tions and learn from the data an environment state transition model F (i.e. a
function that maps current state st and action at to next state st+1) and (b)
derive a controller π from this learned model. In each learning iteration, VELM
aims to ensure that the data collection process of using the current controller π
to interact with the true environment in step (a) is safe. One way to do so is by

Verified Exploration through Learned Models 3

verifying the safety of π according to the learned model. However, conducting
reachability analysis of neural networks in a closed-loop control system remains
a challenging research problem [27]. Alternatively, VELM considers π as an or-
acle and derives a much simpler and verification-friendly time-varying linear
controllers π′ to approximate the policy actions executed by π at each time step
within the RL task horizon. While alternative methods such as approximating a
neural controller as a polynomial function exist [48], our objective is to achieve a
balance between expressiveness and verifiability. Time-varying linear controllers
provide computational efficiency for reachability analysis, making verification
over learned models feasible in a learning loop. VELM solves a constrained opti-
mization problem aimed at optimizing the behavior of π′ to closely match that
of π while simultaneously ensuring that π′ can be formally verified as safe for
the learned environment model. Leveraging π′ as a reference, VELM computes a
safety shield that restricts the neural policy π to explore solely within the state
space where π′ is verified as safe in the learned model. The shield intervenes
whenever the neural policy π proposes a potentially unsafe control action that
could result in a next state outside the safe state space. It then substitutes this
action with a safe alternative provided by π′. The environment state transition
model F is repeatedly updated during the learning process using data safely
collected using the shielded neural controller. The computation of the shield is
accordingly repeated, leading to a more refined shield with each update to the
controller.

While there exists prior work that explored shielding for safe RL, they re-
quire a calibrated piecewise linear dynamics model [52,5] or an abstract model of
the agent’s safe behavior [24], whereas VELM automatically learns a dynamics
model and a safe shielding policy. Adapting these techniques to learned envi-
ronment models that evolve across training iterations is challenging, given the
inherent difficulty of approximating nonlinear models as piecewise linear func-
tions. Compared with SPICE [4], VELM is computationally efficient as it only
computes a shield once for a policy while SPICE requires calling a QP (Quadratic
Programming) procedure at every timestep.

Across a suite of challenging continuous control benchmarks, VELM ex-
hibits reward performance comparable to fully neural approaches and signifi-
cantly fewer safety violations during training compared to state-of-the-art safe
RL techniques.

In summary, this paper makes the following contributions:

– We propose a novel approach for model-based safe reinforcement learning.
Our approach learns an environment model as a symbolic formula and con-
structs a shielding layer to confine an RL agent to explore within a state
space formally verified as safe for the learned model, thereby enhancing the
overall safety profile of the RL system.

– We present VELM as an efficient instantiation of this approach. The exper-
iment results show that VELM offers much greater safety than prior model-
based safe RL approaches without suffering a loss in reward performance.

4 Yuning Wang and He Zhu

2 Problem Setup

Safety Specification. We define a safety specification as a logical formula spec-
ifying the safe states of a control system.

Definition 1 (Safety Specification). A safety specification φ is a quantifier-
free Boolean combination of linear inequalities over the environment state vari-
ables x:

⟨φ⟩ ::= ⟨P⟩ | φ ∧ φ | φ ∨ φ;

⟨P⟩ ::= A · x ≤ b where A ∈ R|x|, b ∈ R;

A state s ∈ S satisfies a safety specification φ, denoted as s |= φ, iff φ(s) is true.

MDP. We formalize an RL system as a Markov decision process (MDP). Specif-
ically, an MDP is a structure M [·] = (S,A, P,R, S0, H, ·) where S is an infinite
set of continuous real-vector environment states which are valuations of the state
variables x1, x2, . . . , xn of dimension n (S ⊆ Rn), A is a set of continuous real-
vector control actions which are valuations of the action variables u1, u2, . . . , um

of dimension m. R : S×A→ R is a reward function that returns the immediate
reward after the transition from an environment state s ∈ S with action a ∈ A.
P (st+1 | st, at) is an (unknown) probabilistic state transition function where
st+1, st ∈ S and at ∈ A and t is a time step index. S0 is a set of initial states. H
is the time horizon of the control task (i.e. the maximum number of timesteps
of a trajectory). An MDP M [·] is parameterized with an (unknown) controller.

Controller (Policy). A controller is a stochastic function π : S → A mapping
states to distributions over actions. We explicitly model the deployment of a
(learned) controller π in M [·] as a closed-loop system M [π]. M [π] generates
trajectories (or rollouts) ζ = s0, a0, s1, a1, . . . , aH−1, sH where s0 ∈ S0, each
at ∼ π(st), and each st+1 ∼ P (st, at). Given a discount factor 0 ≤ β < 1, the

long-term reward of a policy π is R(π) = E(ζ=s0,a0,...,sH)∼M [π][
∑H

t=0 β
tR(si, ai)].

Problem Formulation. The goal of reinforcement learning is to find a policy
π∗ = argmaxπ R(π). To achieve this goal, the learning process of (model-free
or model-based) reinforcement learning algorithms progressively refines and op-
timizes policies π0, π1, . . . , πT over successive iterations. At each iteration, the
current policy is evaluated, and adjustments are made to improve its perfor-
mance. This learning process continues until the policy converges to the optimal
policy π∗. Given a bound δ, we define safe exploration as a learning process
π0, π1, . . . , πT such that

πT = π∗ and ∀1 ≤ j ≤ T, 0 ≤ t ≤ H. Pζ∼πj ,st∈ζ(¬φ(st)) < δ (1)

Essentially, the end goal is for the final policy πT in the sequence to optimize
long-term rewards, while each intermediate policy (excluding π0) is constrained
to a limited probability δ of unsafe behavior. This definition does not place safety
constraints on π0 as the environment dynamics is not known and hence π0 can
exhibit arbitrary (unsafe) behavior.

Verified Exploration through Learned Models 5

Algorithm 1 VELM: Verified Exploration based on Learned Models.

1: procedure VELM(M , φ)
2: Initialize an empty dataset D and a random NN policy πNN

3: for epoch in 0, . . . , T do
4: if epoch = 0 then
5: πS ← λs.λt. πNN(s)
6: else
7: πS ← Shield(M̂, πNN, φ) ▷ Algorithm 2

8: Unroll real rollouts {(st, at, st+1)} in the real environment M under πS

9: D ← D ∪ {(st, at, st+1)}
10: M̂ ← LearnModel(D)
11: Optimize πNN using the learned environment M̂ via any RL algorithm

3 Verified Exploration through Learned Models

The Main Algorithm. Our overall framework, Verified Exploration through
Learned Models (VELM), employs a learned environment model to facilitate
safety analysis during the training phase. Akin to existing model-based safe
RL techniques [12,5,34,26,4], VELM utilizes the learned environment model to
delineate safety regions for the underlying control policy. While VELM can also
be applied to safe model-based planning, a policy is in general more efficient than
a planner. The primary training procedure is outlined in Algorithm 1. It operates
within an unknown environment M and takes as input a safety property φ. The
algorithm concurrently learns an environment model represented as an MDP M̂
and a stochastic neural control policy πNN

1. The algorithm maintains a dataset D
comprising observed environment transitions, each of which is a tuple of future
and past states along with the controller’s actions (st, at, st+1). This dataset is
acquired by interaction with the real environment M (Line 9). Subsequently,
VELM utilizes this dataset to learn a symbolic environment model M̂ (Line 10)
and optimizes the neural policy πNN on this learned model via any model-free RL
algorithm of the user’s choice (Line 11). Notably, VELM uses a shielded policy
πS for exploring the real environment to construct D. πS takes a state s at a
timestep t as input and generates a safe action for the RL agent to execute at
t. This is necessary because directly executing the neural controller πNN in the
real environment M could result in safety violations. The shield policy πS is
constructed in Line 7 via the Shield procedure (Algorithm 2). This procedure
leverages reachability analysis on the learned environment model M̂ to establish
a safe exploration regime covering the entire task horizon. πS constrains πNN to
only explore the real environment within the established safe region.

In the following, we describe in detail the procedures to learn symbolic envi-
ronment models and construct shielded policies for verified safe exploration.

1 VELM integrates a stochastic policy for exploring the environment to seek high-
reward signals. This is not a strict requirement and VELM can also integrate any
deterministic policy learning algorithms.

6 Yuning Wang and He Zhu

α ::= α + α | α − α | α × α | α / α | sin(α) | cos(α) | x | n

Fig. 1: Context-free grammar for defining state-transition functions.

3.1 Symbolic Environment Models

The LearnModel procedure (Line 10 in Algorithm 1) follows the conven-
tional model-based RL framework [25] to learn an environment MDP model
M̂ [·] = (S,A, F,R, S0, H, ·) where F : S ×A→ S is learned using the dataset D
to approximate the unknown probabilistic state transition P in the real environ-
ment2. VELM distinguishes itself from existing methods by learning a symbolic
environment state transition function F instead of a deep neural network model.

Given a dataset D = {(st, at, st+1)} of real environment state transitions, the
LearnModel procedure learns an approximate model f of the environment’s
dynamics to fit D:

f = argmax
f∈Fα

E(st,at,st+1)∈D∥f(st, at)− st+1∥ (2)

where Fα is a family of expressions that can be articulated using the grammar
outlined in Fig. 1. This grammar accommodates common mathematical opera-
tors such as trigonometric functions. The metavariables x and n represent state
variables and constants respectively. The symbolic function f establishes the re-
lation between the next state st+1 and the system’s past state st, as well as the
controller’s action at.

Why symbolic environment models? First, we observe that the dynamics
of non-linear control systems often follow mathematical equations. Second, sym-
bolic environment models are suitable for long-horizon reachability analysis to
verify the safety of a control system. In contrast, performing reachability anal-
ysis over neural network models suffers from large accumulation errors arising
from over-approximation [27].

To infer a symbolic formula f to fit D in Equation 2, the LearnModel
procedure employs off-the-shelf symbolic regression techniques [10]. Symbolic
regression is a machine learning approach that can learn the governing formu-
las of data. As demonstrated in recent studies [10,28,30], symbolic regression
exhibits excellent extrapolation capabilities and has already proved useful in a
variety of domains such as physics. VELM uses it to search over the space of
mathematical expression by manipulating the operators, constants, and variables
in the grammar depicted in Fig. 1.

Nondeterministic Environment Model. It is important to note that VELM
does not directly use the deterministic function f as the state transition function
F for learned models M̂ [·] = (S,A, F,R, S0, H, ·). In cases where control envi-
ronments are stochastic (common in RL tasks), deterministic state transition
functions are not adequate. For stochastic environments, we aim to bound the

2 If the real reward function is unknown, an approximate reward function R : S×A→
R can also be learned from data [25] by recording in D = {(st, at, st+1, rt)} the
immediate reward rt of taking an action at. We omit this detail in the paper.

Verified Exploration through Learned Models 7

deviation between f and the real environment. We identify ϵ such that for all
st and at, ∥f(st, at) − st+1∥ ≤ ϵ where st+1 ∼ P (·|st, at) is sampled from the
true environment transition at st by taking action at. We then express the state
transition function of a learned model M̂ [·] as a nondeterministic function:

F (st, at) = f(st, at) + [−ϵ, ϵ]
When used for simulation, F generates a next state at time step t by adding an
error vector uniformly sampled from [−ϵ, ϵ] to the result of f(st, at). When used
for reachability analysis and verification, we consider all possible error terms
within [−ϵ, ϵ] as an overapproximation to account for the worst-case deviation.

In practice, we estimate ϵ from data and choose the most permissible ϵ such
that ∀(st, at, st+1) ∈ D. ∥f(st, at)−st+1∥ ≤ ϵ. Given f , with sufficient data in D,
the model learning procedure LearnModel returns a model that is close to the
actual environment with high probability 1− δM . That is, for all s ∈ S, a ∈ A,

Prs′∼P (·|s,a)
[
s′ ̸∈ F (s, a)

]
< δM

In this paper, we learn F as a discrete dynamics system model. With an Ordinary
Differential Equation solver, we can also leverage symbolic regression to learn a
more accurate continuous-time dynamics model. This is left for future work.

Fig. 2: Executing a random pol-
icy on the real CartPole environ-
ment and a learned model.

Example 1. Consider the classic CartPole envi-
ronment [8]. The system’s state is described by
(x, ẋ, θ, θ̇) where x (resp. ẋ) denotes the position
(resp. speed) of the cart along the x-axis and θ
(resp. θ̇) is the angle (resp. angular velocity) of
the pole with respect to the cart. The goal is to
balance the pole straight up and bound the de-
viation of the cart. VELM learns the following
equation to describe the state transition func-
tion of the system using the Operon [9] symbolic
regression tool where u represents the control ac-
tion (we ignore ϵ for simplicity):

x = x+ 0.02ẋ θ = θ + 0.02θ̇

ẋ = ẋ+ 0.019u− (0.001u · sin(0.999θ) + 0.001) sin(θ)− 0.007 sin(2θ)

θ̇ = θ̇ − (0.029u+ (0.001ẋ+ 0.002θ̇2 + 0.001θ̇ − 0.02) sin(θ)) cos(θ) + 0.3 cos(θ − 1.58)

Fig. 2 depicts the rollouts in the real environment and simulated in the learned
model by executing a random policy from (0,0,0,0). The learned model can
reasonably capture real trajectories within a small error bound.

3.2 Shielding for Verified Safe Exploration

With a learned environment model M̂ [·], under the assumption of its high-
probability approximate accuracy, the verification of a neural controller πNN can
be directly pursued through reachability analysis over the closed-loop neural

8 Yuning Wang and He Zhu

network controlled system M̂ [πNN] (NNCS). However, the verification of NNCS
remains a significant challenge in the research literature [27].
Time-varying Linear Controllers. VELM instead distills a neural controller
πNN into a time-varying linear controller that is as similar as possible to πNN.
Simultaneously, this process ensures that the safety of the time-varying linear
controller can be formally verified concerning the learned model M̂ [·] and a
safety property φ. Principally, a time-varying linear controller can provide an
accurate local approximation of a neural controller at each time step (if the time
step is small) and incur a much-reduced verification cost owing to the linearity
of the representation. A time-varying linear controller πθ(s, t) with trainable
parameters θ for a time horizon H (0 ≤ t < H) can be expressed mathematically
as:

πθ(s, t) = θk(t)
T · s+ θb(t)

πθ(s, t) generates the control input at time t when observing the current envi-
ronment state s at t. The time-varying nature of the controller is captured by
the dependence of the time-varying gain matrix θk(t) and the time-varying bias
term θb(t), reflecting the dynamic adjustments in the control strategy over dif-
ferent time instances t. The overall objective of distilling πNN into a time-varying
linear controller πθ is:

min
θ

Es0,s1,...,sH∼M̂ [πθ]
∥πθ(st, t)− πNN(st)∥2

subject to Verify(M̂, πθ, φ) = True (3)

where ∥ · ∥2 is a loss function using the L2 norm.
Verifying Time-varying Linear Controllers. VELM verifies the safety of
a time-varying linear controller πθ for a learned model M̂ [·] using abstract in-
terpretation. While there exist other approaches such as synthesizing barrier
certificates for controller verification, the techniques have difficulty handling non-
polynomial system dynamics. VELM soundly performs reachability analysis to
approximate the set of reachable states of a control system at each timestep:

Definition 2 (Symbolic Rollouts). Given an environment model M̂ [π] =
(S,A, F,R, S0, H, π) deployed with a controller π, an abstract domain D, an ab-
stract transformer FD for the state transition function F over D, a symbolic
rollout of M [π] over D is ζD = SD

0 , SD
1 , . . . , SD

H where SD
0 = α(S0) is the ab-

straction of the initial states S0 in D and α is the abstraction function of D.
Each symbolic state SD

t over-approximates the set of reachable states from an
initial state in S0 at timestep t. We have SD

t+1 = FD(SD
t , AD

t

)
where AD

t over-
approximates the set of actions at t. γ is the concretization function of D for
obtaining the set of concrete states represented by an abstract state SD

t .

The abstract interpreter FD in VELM uses Taylor Model (TM) flowpipes
as the abstract domain D to reason about the safety of M̂ [πθ]. For reachabil-
ity analysis of M̂ [πθ] at each timestep t (where t > 0), VELM gets the TM
flowpipe SD

t for the reachable set of states of M̂ [πθ] at timestep t − 1. To ob-
tain a TM representation for the output set of the time-varying linear controller
πθ at timestep t, VELM uses TM arithmetic to evaluate a TM flowpipe AD

t for

Verified Exploration through Learned Models 9

Algorithm 2 Synthesize a shield πS for safe exploration of πNN. πS intervenes
to override potentially unsafe actions by πNN.

1: procedure Shield(M̂ [·] = {S,A, F,R, S0, H, ·}, πNN, φ)
2: πθ ← Approximate(M̂ [·], πNN, φ) ▷ Algorithm 3
3: SD

0 , SD
1 , . . . , SD

H−1, S
D
H ← ReachSet(M̂ [πθ])

4: πS ← λs.λt. let aNN = πNN(s) in
5: if ∃0 ≤ i ≤ t+ 1. F (s, aNN) ⊂ γ(SD

i) then aNN
6: else let i = max

(
{i | s ∈ γ(SD

i }
)
in πθ(s, i)

7: return πS

πθ(s, t) = θk(t)
T ·s+θb(t) for all states s ∈ SD

t . The resulting TM representation
AD

t can be viewed as an overapproximation of the controller’s output at timestep
t. Finally, we use Flow∗ [11] to construct the TM flowpipe overapproximation
SD
t+1 for all reachable states at timestep t by reachability analysis over the state

transition function FD(SD
t , AD

t). To verify M̂(πθ) against a safety property φ,
VELM uses Flow∗ to check if for each abstract state SD

t in the symbolic rollout
of M̂(πθ), the concretized states in γ(SD

t) does not violate φ.
Verified Shielding. The safety of a distilled controller πθ does not imply its
oracle neural controller πNN is safe. For safe exploration using πNN, VELM con-
structs a shield for πNN based on πθ. The high-level algorithm for shield synthesis
is presented in Algorithm 2.

Given a learned environment model M̂ [·], a neural controller πNN, and a safety
specification φ, at Line 2, Algorithm 2 invokes Approximate to construct a dis-
tillation of πNN as a time-varying linear controller πθ. We describe Approximate
in detail in Algorithm 3 and Sec. 3.3. At Line 3, Algorithm 2 uses the symbolic
rollout ζD = SD

0 , SD
1 , . . . , SD

H of M̂ [πθ] to derive the reachable set of states of

πθ for the learned environment model M̂ [·]. As this reachable set of states has
been verified safe for M̂ [πθ], the shield constrains πNN to only explore within the
reachable set ∪0≤i≤Hγ(SD

i) to remain safe. Algorithm 2 returns a shield πS for
πNN in the form of a lambda function that takes an environment state st at time
step t and t as inputs. We show that assuming the learning model soundly ap-
proximates the unknown state transition distribution P of the real environment
(Sec. 3.1), the shield is provably safe in the following lemma.

Lemma 1. Assume a learned environment model M̂ [·] = {S,A, F,R, S0, H, ·}
is a sound nondeterministic approximation of the true environment: ∀s ∈ S, a ∈
A. s′ ∼ P (·|s, a) ⇒ s′ ∈ F (s, a). Given a safety property φ, a neural policy
πNN, and its shield πS = Shield(M̂ [·], πNN, φ), for any rollouts s0, a0, s1, . . . , sH
collected by πS in the true environment where s0 ∈ S0, at = πS(st, t), and
st+1 ∼ P (·|st, at), we have st |= φ (i.e. st is safe) for all 0 ≤ t ≤ H.

Proof. Since πS = Shield(M̂ [·], πNN, φ), there exists a πθ (Line 2 in Algo-
rithm 2) whose symbolic rollouts SD

0 , SD
1 , . . . , SD

H can be verified safe with re-
spect to φ (Line 3 of Algorithm 2). We show that for all 0 ≤ t ≤ H, we have∨

0≤i≤t st ∈ γ(SD
i). This invariant implies that st is safe. We prove the invariant

10 Yuning Wang and He Zhu

by induction. When t = 0, the invariant holds as s0 ∈ γ(SD
0) by construction.

Given an st that satisfied the invariant, if ∃0 ≤ i ≤ t+1. F (st, πNN(st)) ⊂ γ(SD
i)

(Line 5), then at = πNN(st) and by assumption st+1 ∼ P (·|st, at) ∈ F (st, at) ⊂
γ(SD

i), which means the invariant holds on st+1 in this case. Otherwise (Line 6),
at = πθ(st, i) where i = max

(
{i | st ∈ γ(SD

i }
)
. Such imust exist as we assume st

satisfied the invariant. Since st+1 ∼ P (·|st, at) ∈ F (st, at) and the soundness of
the abstract interpreter FD ensures that if st ∈ γ(SD

i), then F (st, at) ⊆ γ(SD
i+1),

which means the invariant holds on st+1 in this case as well. By induction, the
invariant is true for all 0 ≤ t ≤ H.

Theorem 1 (Shield (Algorithm 2) is probabilistically safe). For a learned
environment model M̂ [·] = {S,A, F,R, S0, H, ·}, let δM be the probability bound
of the model: Prs′∼P (·|s,a)

[
s′ ̸∈ F (s, a)

]
< δM . Given a safety property φ, a

neural policy πNN, and its shield πS = Shield(M̂ [·], πNN, φ), for any roll-
outs s0, a0, s1, . . . , sH collected by πS in the true environment where s0 ∈ S0,
at = πS(st, t), and st+1 ∼ P (·|st, at), we have st |= φ (i.e. st is safe) with
probability at least (1− δM)t for all 0 ≤ t ≤ H.

Proof. By Lemma 1, if st+1 ∈ F (st, at), then st+1 is safe for all 0 ≤ t < H. By
assumption, at each time step, we have st+1 ∈ F (st, at) with probability at least
1−δM . After t time steps, the probability that the assumption is valid is at least
(1− δM)t, which means that st is safe with probability at least (1− δM)t.

Fig. 3: Executing a shielded neu-
ral policy in ACC. The green re-
gion denotes the safe space veri-
fied on a learned model. The yel-
low regions denote the control
steps where intervention takes
place.

We can relate the probability guarantee in
Theorem 1 with our overall objective in Equa-
tion 1 by bounding δM < 1 − (1 − δ)/exp(H).
This theorem illustrates that VELM only allows
for safety violations when there’s an inaccuracy
in the environment model. In contrast, exist-
ing approaches to safe exploration are suscep-
tible to safety violations stemming from both
modeling inaccuracies and actions that are not
safe even considering the environment model.
For example, SPICE [4] applies weakest precon-
dition generation from safety constraints to a
linearization of the learned environment model
to determine safe control actions. However, this
linearization process introduces substantial ap-
proximation errors, compromising the safety of
the computed actions on the learned environment model. CRABS [34] uses neu-
ral networks for representing environment models and control barrier certificates
to identify safe exploration regions. However, a neural control barrier certificate
may converge to a suboptimal model and CRABS does not have a procedure
to rigorously guarantee its correctness. This may result in delayed or absent
intervention for unsafe behaviors.

Verified Exploration through Learned Models 11

Example 2. Consider an adaptive cruise control (ACC) system [5]. The goal is
to control an ego car to closely follow a lead car without collision. The lead car
can apply acceleration to itself at any time. Fig. 3 shows the rollouts (blue) of
a shielded neural controller πNN in the real environment. The x-axis shows the
distance to the lead car while the y-axis shows the relative velocities of the two
cars. The rollouts start by accelerating to close the gap with the lead car and
subsequently decelerating to prevent a collision. The green region denotes the
reachable set of a distilled time-varying linear controller πθ verified as safe on a
learned model of the ACC environment. The yellow regions indicate interventions
where πθ constrains πNN to stay within the safe region. Without such intervention,
the neural controller alone would fail to decelerate rapidly enough and crash into
the lead car (the dashed line on the right side). At times, πθ needs to intervene
well before the final steps to ensure the feasibility of avoiding a crash later.

3.3 Neural Controller Approximation

This section formalizes the Approximate procedure invoked by Algorithm 2
(Line 2) for distilling a neural controller πNN to a time-varying linear controller
πθ that can be verified safe according to a learned environment model.

Minimizing the gap between πθ and a (fixed) neural controller πNN as two
functions can be straightforwardly achieved by optimizing θ through gradient
descent. However, a binary verification result (true or false) does not offer guid-
ance on how θ should be optimized to ensure that πθ can be verified safe. Follow-
ing previous research [45], when facing verification failures, our approach utilizes
verification feedback, indicating the extent of safety violations, to guide the opti-
mization process for πθ. We first formalize the concept of safety violation within
the concrete environment state space and then lift it to abstract state spaces.

Definition 3 (State Safety Loss Function). For a safety specification φ over
states s ∈ S, we define a non-negative loss function L(s, φ) such that L(s, φ) = 0
iff s satisfies φ, i.e. s |= φ. We define L(s, φ) recursively, based on the possible
shapes of φ (Definition 1):

– L(s,A · x ≤ b) := max(A · s− b, 0)
– L(s, φ1 ∧ φ2) := max(L(s, φ1),L(s, φ2))
– L(s, φ1 ∨ φ2) := min(L(s, φ1),L(s, φ2))

Notice that L(s, φ1 ∧ φ2) = 0 iff L(s, φ1) = 0 and L(s, φ2) = 0, and similarly
L(φ1 ∨ φ2) = 0 iff L(φ1) = 0 or L(φ2) = 0.

We extend the safety loss definition (Definition 3) to the abstract state space
employed in a verification procedure.

Definition 4 (Abstract State Safety Loss Function). Given an abstract
state SD and a safety specification φ, we define an abstract safety loss function:

LD(S
D, φ) = max

s∈γ(SD)
L(s, φ)

12 Yuning Wang and He Zhu

It quantifies the worst-case safety loss of φ across all concrete states encompassed
by SD. For an abstract domain D, we typically can approximate the concretiza-
tion of an abstract state γ(SD) using a tight interval γI(S

D). For example, it is
straightforward to represent Taylor model flowpipes as intervals in Flow∗. Based
on the potential structure of φ, we redefine LD(S

D, φ) as:

– LD(S
D,A · x ≤ b) := maxs∈γI(SD)

(
max(A · s− b, 0)

)
– LD(S

D, φ1 ∧ φ2) := max(LD(S
D, φ1),LD(S

D, φ2))
– LD(S

D, φ1 ∨ φ2) := min(LD(S
D, φ1),LD(S

D, φ2))

By definition, we have LD(S
D, φ) = 0 =⇒ ∀s ∈ γI(S

D). s |= φ.
We further lift the definition of safety loss over abstract states (Definition 4)

to the symbolic rollout of an MDP (Definition 2).

Definition 5 (Symbolic Rollout Safety Loss). Given an environment model
M̂ [πθ] and a safety specification φ, assuming the symbolic rollout of M̂ [πθ] over
an abstract domain D is ζD0:H = SD

0 , . . . , SD
H , we define an abstract safety loss

function to measure the degree to which φ is violated by M̂ [πθ]:

LD(M̂ [πθ], φ) = LD(ζ0:H , φ) = max
0≤i≤H

(LD(S
D
i , φ))

Definition 5 enables a quantitative metric for the safety loss of a controller
πθ in the abstract state space of a safety verifier. By definition, we have

LD(M̂ [πθ], φ) = 0 =⇒ M̂ [πθ] |= φ.

We rewrite the overall objective of distilling a neural controller πNN into a
time-varying linear controller πθ in Equation 3 as:

min
θ

Es0,s1,...,sH∼M̂ [πθ]
∥πθ(st, t)− πNN(st)∥2

subject to LD(M̂ [πθ], φ) = 0 (4)

The objective described in Equation 4 frames a constraint optimization prob-
lem. To address this, we employ Lagrangian optimization, which provides a prin-
cipled way to seamlessly incorporate the verification constraint (LD(M̂ [πθ], φ) =
0) into the distillation objective. We introduce a Lagrangian function that incor-
porates a Lagrange multiplier λ to account for constraint violation and transform
Equation 4 into an unconstrained optimization problem:

L(θ, λ) = LS(πθ, πNN) + λ · LD(M̂ [πθ], φ)

where LS(πθ, πNN) = Es0,s1,...,sH∼M̂ [πθ]
∥πθ(st, t) − πNN(st)∥2. VELM seeks to

optimize the primal parameter θ and the Lagrange multiplier λ to minimize
the function L(θ, λ), effectively reducing both the L2 loss for the distillation
objective and safety violations for the verification constraint.

Algorithm 3 outlines the procedure for distilling πNN to πθ. It iteratively
performs the following two gradient-based update rules to minimize L(θ, λ):

θ ← θ − ηθ ·
(
∇θLS(πθ, πNN) + λ · ∇θLD(M̂ [πθ], φ)

)
λ← λ+ ηλ · LD(M̂ [πθ], φ)

where ηθ is a learning rate for θ and ηλ is a learning rate for λ. The Lagrange
multiplier λ is increased during the optimization process to penalize deviations

Verified Exploration through Learned Models 13

Algorithm 3 Approximate a neural control policy πNN with a time-varying linear
controller πθ while ensuring πθ is formally verified safe for the learned model M̂ .

1: procedure Approximate(M̂ [·] = {S,A, F,R, S0, H, ·}, πNN, φ)
2: Initialize a time-varying linear policy πθ over H timesteps
3: θ ← all parameters in πθ for optimization
4: while true do
5: ℓS ← LS(πθ, πNN)
6: ℓD ← LD(M̂ [πθ], φ)
7: if ℓD = 0 and ℓS converges then
8: return πθ

9: θ ← θ − ηθ ·
(
∇θLS(πθ, πNN) + λ · ∇θLD(M̂ [πθ], φ)

)
10: λ← λ+ ηλ · LD(M̂ [πθ], φ)

from satisfying the verification constraint. As such, even though the verification
procedure may introduce approximation errors, VELM can reduce this error
by conducting optimization in the abstract state space [45]. VELM repeats the
iterative update until the distillation loss (ℓS) converges and the safety violation
loss (ℓD) converges to 0 (Line 8).

Gradient Estimation for LD(M̂ [πθ], φ). Deriving the gradients of the ver-
ification constraint LD(M̂ [πθ], φ) directly poses a challenge, as it requires the
verification procedure to be differentiable, a feature not practical. To address
this obstacle, following prior research [45], VELM estimates the gradients of LD
through random search [36]. In each training iteration, given a closed-loop en-
vironment M̂ [πθ], we generate perturbed systems M̂ [πθ+νω] and M̂ [πθ−νω] by
introducing sampled Gaussian noise ω to the current controller πθ’s parameters θ
in both directions. Here, ν represents a small positive real number. By assessing
the abstract safety losses of the symbolic rollouts for M̂ [πθ+νω] and M̂ [πθ−νω],
we update θ using a finite difference approximation along an unbiased estimator
of the gradient:

∇θLD(M̂ [πθ], φ)←
1

N

N∑
k=1

(
LD(M̂ [πθ+νωk

], φ)−LD(M̂ [πθ−νωk
], φ)

)
ν

ωk

Performance Guarantees. We conclude the technical section by discussing
the reward performance of VELM. One important concern is whether shielding
a neural control policy hinders the RL algorithm’s ability to learn the opti-
mal policy. Previous studies [44,5,4] have established the following regret bound
concerning the reward performance of a shielded policy for safe exploration com-
pared to the optimal policy that does not seek to restrict safety violations during
the learning process. Let πi

S = Shield(M̂ i[·], πi
NN, φ) for 1 ≤ i ≤ T be a sequence

of policies learned in Algorithm 1 where φ is the safety property, M̂ i[·] and πi
NN

are the learned environment model and neural controller at the ith iteration.
Introduce a safety indicator Z that takes the value 1 when πi

S(s, t) = πi
NN(s) and

0 otherwise, and let ξ = E[1 − Z] be the frequency with which πi
S intervenes

14 Yuning Wang and He Zhu

in neural policy controls. Assume the reward function is Lipschitz on the con-
troller parameter space and let LR be the corresponding Lipschitz constant. Let
β and τ2 be the bias and variance in the gradient estimate that is incurred due
to sampling. Let ϵS be an upper bound on the imprecision incurred by distill-
ing πi

NN to a linear time-varying controller. Let ϵm be an upper bound for the
Kullback-Leibler divergence between the learned environment model and the
true environment dynamics at all time steps. Let ϵπ be an upper bound on the
total variational divergence between the policy used to gather data and the pol-
icy being trained at all time steps. Set the learning rate η of the RL algorithm

for updating πi
NN as

√
1
τ2 (

1
T + ϵS). Assuming π∗ is the (unknown) the optimal

safe control policy, we have the following regret bound [44,5,4] for Algorithm 1:

R(π∗) − E
[
1
T

∑T
i=1 R(πi

S)
]
= O

(√
1
τ2 (

1
T + ϵS) + β + LR · ξ + ϵm + ϵπ

)
. VELM

does not impose a significant penalty on the agent’s reward performance for
achieving safety as the regret bound becomes tighter when the frequency of in-
terventions in the decision of the neural controllers ξ decreases during training.
As the environment model improves during training (i.e. ϵm and ϵπ decrease), the
controller converges to higher rewards. The remaining terms are associated with
the standard error by using sampling to approximate policy update gradients.

4 Experiments

In our implementation of VELM 3, we use SAC [23], a state-of-the-art rein-
forcement learning algorithm, as the base algorithm to optimize neural network
controllers. We build the abstract interpreter for reachability analysis of a time-
varying linear controller against a learned model on top of Flow∗ [11] for rea-
soning about nonlinear state transition functions. We use Operon [9] to learn a
symbolic environment model for the LearnModel procedure at Line 10 in Al-
gorithm 1. In the implementation, we invoke the LearnModel procedure only
when the existing environment model is invalid for the newly collected trajecto-
ries from the real environment. Recall that our learned model is nondeterministic
(Sec. 3.1). Given a current state, it outputs a range for the next state. If the
actual next state is not within the range, we consider the model invalid (i.e.,
∃t.st+1 ̸∈ F (st, at)). This strategy significantly accelerates the learning process.

Baselines. We compared VELM with three baselines: SAC, SPICE [4], and
MBPPO-Lagrangian [26]. The SAC baseline acts as an upper bound on reward
performance since the agent does not need to explicitly handle safety constraints.
The other safe RL baselines are relevant because they are all model-based as
VELM. However, they all use neural networks for learning environment state
transition dynamics. SPICE applies weakest precondition generation from safety
constraints to a linearized form of learned environment models to ascertain safe
control actions for shielding. The linearization step may introduce approxima-
tion errors. MBPPO-Lagrangian finds a safety-constraint-satisfying policy by

3 VELM is available at https://github.com/RU-Automated-Reasoning-Group/VELM

https://github.com/RU-Automated-Reasoning-Group/VELM

Verified Exploration through Learned Models 15

Fig. 4: Rewards for all the tools throughout the training phase. The solid curve
represents the mean across 5 random seeds. The shaded area indicates the stan-
dard deviation.

using the Lagrangian method to reduce the cumulative safety violations through-
out trajectories executed on the learned model. This method does not consider
shielding to ensure safe exploration. We also tried to use CRABS [34] as another
model-based safe-learning baseline. In addition to a neural environment model,
CRABS uses another neural network to learn a control barrier certificate to iden-
tify a safe region on the neural environment model for shielding. However, we
found that CRABS is excessively time-consuming to execute, completing only an
average of 10 episodes within a day. Therefore, we have excluded CRABS in the
results presented in this section. In summary, these baselines suffer from safety
violations stemming from both (1) environment modeling imprecision and (2)
control policies that are not safe even considering the environment model. VELM
eliminates the second source of errors. Our experiments aim to answer the ques-
tion - How does the performance of VELM compare to representative baseline
approaches, considering metrics such as rewards, number of unsafe steps, and
overall efficiency?

Benchmarks. We used the benchmarks considered in related work. Pendulum,
ACC, Obstacle, Obstacle2, Road2D, and CarRacing are taken from the SPICE
benchmarks [5,4]. In Road2D, an autonomous vehicle is controlled to reach a
designated destination while adhering to a specified speed limit. Obstacle and
Obstacle2 pose a challenge for a 2D robot to reach a specified goal while avoiding

16 Yuning Wang and He Zhu

Fig. 5: Cumulative safety violations for all the tools throughout the training
phase. The solid curve represents the mean across 5 random seeds. The shaded
area indicates the range between the minimum and maximum values.

an obstacle. In Obstacle, the obstruction is positioned to the side, affecting the
agent only during exploration, without cutting the shortest path to the goal.
In Obstacle2, the obstruction is placed between the initial region and the goal
region, requiring the learned controller to navigate around it. In the Pendulum
task, the objective is to maintain a pendulum in the upright position. The goal
of ACC (adaptive cruise control) is to closely follow a leading vehicle without
collision, with the lead car selecting acceleration randomly from a truncated
normal distribution at each time step. The CarRacing environment is similar
to Obstacle2 but the goal is to reach a goal region on the opposite side of the
obstacle and then return to the initial region. This requires the agent to com-
plete a loop around the obstacle to fulfill the objective. Cartpole is from Open AI
Gym [8]. The nonlinear benchmarks CartPoleMove and CartPoleSwing are taken
from CRABS [34]. The CartPoleMove task is challenging as high-reward policies
must carefully explore near the safety boundary. The user-specified safety set
is {(x, θ) : |θ| ≤ θmax = 0.2, |x| ≤ 0.9} where x is the cart horizontal position
and θ is the pole angle. θmax corresponds to approximately 11 degrees. The re-
ward function of the task is r(s, a) = x2. Consequently, the optimal policy must
delicately move the cart and pole toward the boundary of unsafe regions but
remain safe. Similarly, the CartPoleSwing task is also high-risk, high-reward en-
vironment. The reward function is r(s, a) = θ2 and the user-specified safety set

Verified Exploration through Learned Models 17

is {(x, θ) : |θ| ≤ θmax = 1.5, |x| ≤ 0.9}. So the optimal policy will swing back and
forth to some degree close to 90◦ but prevent the pole from falling. LALO20 is
a challenging 7-dimensional nonlinear benchmark modeling a molecular network
taken from prior work [48]. This task is difficult because the initial states are
situated near the boundary of the unsafe region.

Results. We report the mean reward performance of the learned controllers as
well as cumulative safety violations over time during training of each benchmark
for VELM and each baseline in Fig. 4 and Fig. 5. The shield intervention rates
of VELM and SPICE are listed in Table 1. These results are averaged over 5
random seeds.

Table 1: Comparison of Shield In-
tervention Rates between VELM
and SPICE.

Benchmarks VELM SPICE

Pendulum 0.07 0.00
ACC 0.23 0.78
Obstacle 0.11 0.70
Obstacle2 0.26 0.34
Road2D 0.03 0.18
CarRacing 0.17 0.44
CartPole 0.12 0.81
CartPoleMove 0.16 0.55
CartPoleSwing 0.01 0.78
LALO20 0.49 0.79

Fig. 5 demonstrates that VELM ex-
hibits superior safety performance as it ex-
periences a significantly lower frequency of
unsafe steps compared to the baseline meth-
ods. Except for the initial controller π0, the
controllers learned by VELM demonstrate
nearly zero safety violations when inter-
acting with the real environment in train-
ing. SPICE accumulates safety violations
more quickly compared to VELM. Over-
all, VELM achieves a 99.7% reduction in
unsafe steps compared to SPICE. SPICE
incurs significantly more safety violations
in highly nonlinear environments such as
CartPole. This suggests that the model lin-
earization step in SPICE introduces signif-
icant approximation errors, resulting in ei-
ther unnecessary interventions or a lack of
intervention when there is truly unsafe behavior. This kind of approximation
error also limits SPICE to use a bounded-time analysis to determine poten-
tial safety violations within the next few time steps (5, as recommended in
SPICE [4]). VELM instead can predict the long-term safety of an action far into
the future. For example, on CartPole, the average shield intervention rate for
SPICE over all the rollouts in the real environment is 81%, while VELM only has
an intervention rate of 12%. Similarly, VELM is safer than MBPPO-Lagrangian
in every benchmark. As can be seen from Fig. 4, MBPPO-Lagrangian contin-
ues to violate the safety property more over time than VELM. Principally, in
contrast to VELM, MBPPO-Lagrangian seeks to limit safety violations in ex-
pectation and does not assure safety for all visited states.

Fig. 4 also demonstrates that in most cases, VELM attains comparable (or
slightly superior) reward performance to SAC. SPICE imposes a substantial
penalty on reward performance compared to SAC. This is because SPICE in
general exhibits significantly higher shield intervention rates than VELM. As
discussed in the performance guarantee analysis in Section 3, frequent shield
interventions hinder the RL algorithm from converging to the optimal policy.

18 Yuning Wang and He Zhu

Table 2: Training time in seconds for model, network and shield updates

Benchmarks Model (s) Network (s) Shield (s)

Pendulum 6.4 184.0 17.1
ACC 489.9 616.4 57.0
Obstacle 18.6 657.0 33.3
Obstacle2 47.7 661.8 436.5
Road2D 19.8 884.0 62.0
CarRacing 41.2 648.3 209.4
CartPole 21.0 577.5 176.8
CartPoleMove 13.3 302.1 384.5
CartPoleSwing 13.2 311.1 10.5
LALO20 47.8 302.3 808.1

LALO20 is the only benchmark that VELM does not achieve a comparable
reward performance to SAC. This is because, in this benchmark, the average
shield intervention rate for VELM over all the rollouts in the real environment
is relatively high at 49%. However, VELM achieves nearly 0 safety violations
during learning. The modest performance penalty is an acceptable trade-off for
safety. Although SPICE also achieves almost 0 safety violations on LALO20, its
shield intervention rate is 79%, preventing the neural policy from achieving high
reward performance.

We present the execution times for each component of VELM across all
benchmarks in Table 2, averaged over five random seeds. The Network column
in the table reports the time spent training a neural network controller using
the base RL algorithm. The Model and Shield columns report the time spent
on learning a symbolic environment model and constructing a formally verified
shield, respectively. On average, VELM dedicates approximately 9% of its ex-
ecution time to model learning and 28% to shield construction. This modest
overhead is justified by the substantial safety guarantees provided.

5 Related Work

Prior Safe RL works consider constrained Markov decision processes (CMDP),
where observed safety violations should be bounded. Lagrangian methods are
widely used to solve CMDP with the Lagrangian multiplier controlled adap-
tively [41] or by PID [40]. Trust region methods [1,51,47] project a current control
policy to a feasible safe space around the current policy in each learning iter-
ation. The goal is to bound the number of safety violations under a threshold
in expectation, while VELM aims to ensure safety for all visited states. Com-
bining these methods with learning a dynamics model can further improve their
data efficiency [50,26]. There exist works that learn conservative safety critics
to underestimate the long-term safety cost of taking a particular action in a
particular state and use the conservative safety critics for safe exploration and

Verified Exploration through Learned Models 19

policy optimization [7,46,49]. However, training neural safety critics models may
require numerous potentially unsafe environment interactions. VELM instead
uses symbolic reachability analysis over learned environment models to identify
safe regions of the state space. Other approaches involve pre-training a policy in
a simpler environment and fine-tuning it in a more challenging setting [39], or
leveraging existing offline data and co-training a recovery policy [42]. Integrat-
ing VELM with pretraining and offline data is an interesting avenue for future
research.

Another research direction explores Lyapunov functions and barrier certifi-
cates. The work in [6] uses Lyapunov functions to identify policy attraction
regions where safe operation is guaranteed for discretized deterministic control
systems, provided that certain Lipschitz continuity conditions hold. However,
this method requires access to system dynamics models. Additionally, a neural
network controller may not exhibit Lipschitz continuity with a reasonable co-
efficient. In [13], it is shown that Lyapunov functions can be co-learned with
controllers for discrete action spaces. This work was extended to continuous ac-
tion spaces by utilizing the Deterministic Policy Gradient theorem [38]. The
work by Chow et al. [14] projects control actions to guarantee a decrease in the
Lyapunov function after each timestep. In contrast, Donti et al. [17] construct
sets of stabilizing actions using a Lyapunov function and then project actions
onto this set. A handcrafted barrier function is leveraged in [12] to secure safe
exploration in reinforcement learning. A line of research, exemplified by a prior
study [48], focuses on verifying an RL controller upon convergence against safety
and reachability properties by inferring barrier certificates but does not address
safety during training. Combining VELM with such work is promising for future
investigation.

Model-based safe reinforcement learning approaches ensure the safety of an
RL agent through a model of its environment. When a pre-established model of
environmental dynamics is available, a safety shield and a backup controller can
be constructed from the model using formal methods to regulate agent behav-
ior [3]. To enforce the safety of a deep neural network controller, the backup con-
troller is run in tandem with the neural controller [2,20,21,22,52,5,31,29,18,24].
Whenever the neural controller is about to leave the provably safe state space
governed by the backup controller, the backup controller overrides the poten-
tially unsafe neural actions to enforce the neural controller to stay within the
certified safe space. When environment dynamics models are not known a priori,
several works [33,32,35,26] maintain a learned environment model and employ
various statistical techniques to devise a policy that is likely to be safe accord-
ing to the model. This gives rise to two sources of unsafe conduct: the policy
may exhibit unsafety in relation to the model, or the model could provide an
imprecise depiction of the environment. VELM addresses the first source of er-
ror by assuring control policies are safe within the confines of an environment
model. REVEL [5] involves an iterative learning approach where a neural pol-
icy is trained, potentially resulting in unsafety. Subsequently, the learned neural
policy is distilled into a piecewise linear policy. Automatic verification is then

20 Yuning Wang and He Zhu

applied to certify the piecewise linear policy, a process akin to constructing a
barrier function. First, this certification method assumes a calibrated dynamics
model, whereas VELM, in contrast, learns the dynamics model. Second, the ver-
ification algorithm in REVEL requires a piecewise linear environment model to
be manually constructed to approximate the calibrated dynamics model, a condi-
tion not practical in VELM (learned environment models evolve across learning
iterations in VELM). CRABS [34] iteratively learns a barrier certificate, a dy-
namics model, and a control policy where the barrier certificate, learned via
adversarial training, ensures the policy’s safety assuming the learned dynamics
model. Yet, formally verifying the correctness of the barrier certificate faces chal-
lenges as both the certificate and the underlying environment model are complex,
deep neural network models. SPICE [4] determines action safety using weakest
preconditions derived from a learned neural environment model within a short
time horizon H. However, extending H to cover the entire horizon of an RL task
faces challenges due to the difficulty of constructing precise weakest precondition
transformers for neural networks and the accumulation of approximation errors
inherent in linearizing a neural environment model. Instead, VELM conducts
formally verified exploration for RL agents, covering the entire horizon of an RL
task through learned environment models.

6 Conclusion

In summary, we present VELM, a novel framework for ensuring verified safe
exploration in model-based reinforcement learning. VELM learns environment
models as symbolic formulas. Through formal reachability analysis over learned
models, VELM constructs an online shielding layer that acts as a safeguard, con-
fining RL agent exploration to a state space verified as safe in the learned model.
The results of our experiments in various RL environments, alongside compar-
isons with state-of-the-art safe RL techniques, highlight the efficacy of VELM in
significantly mitigating safety violations during online exploration while main-
taining strong learning performance. VELM thus establishes a foundation for
building trustworthy and secure RL systems capable of navigating complex en-
vironments while adhering to stringent safety constraints.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization.
In: Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017. Proceedings of Machine Learning
Research, vol. 70 (2017)

2. Akametalu, A.K., Kaynama, S., Fisac, J.F., Zeilinger, M.N., Gillula, J.H., Tom-
lin, C.J.: Reachability-based safe learning with gaussian processes. In: 53rd IEEE
Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December
15-17, 2014 (2014)

Verified Exploration through Learned Models 21

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018 (2018)

4. Anderson, G., Chaudhuri, S., Dillig, I.: Guiding safe exploration with weakest pre-
conditions. In: The Eleventh International Conference on Learning Representations
(2023)

5. Anderson, G., Verma, A., Dillig, I., Chaudhuri, S.: Neurosymbolic reinforcement
learning with formally verified exploration. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

6. Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe model-based re-
inforcement learning with stability guarantees. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA (2017)

7. Bharadhwaj, H., Kumar, A., Rhinehart, N., Levine, S., Shkurti, F., Garg, A.: Con-
servative safety critics for exploration. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

9. Burlacu, B., Kronberger, G., Kommenda, M.: Operon c++: An efficient genetic
programming framework for symbolic regression. In: Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference Companion. GECCO ’20 (2020)

10. Cava, W.G.L., Orzechowski, P., Burlacu, B., de França, F.O., Virgolin, M., Jin,
Y., Kommenda, M., Moore, J.H.: Contemporary symbolic regression methods and
their relative performance. In: Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual (2021)

11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 8044 (2013)

12. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019 (2019)

13. Chow, Y., Nachum, O., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: A lyapunov-
based approach to safe reinforcement learning. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada (2018)

14. Chow, Y., Nachum, O., Faust, A., Duéñez-Guzmán, E.A., Ghavamzadeh, M.: Safe
policy learning for continuous control. In: 4th Conference on Robot Learning, CoRL
2020, 16-18 November 2020, Virtual Event / Cambridge, MA, USA. Proceedings
of Machine Learning Research, vol. 155 (2020)

15. Dalal, G., Dvijotham, K., Veceŕık, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. CoRR abs/1801.08757 (2018)

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
17. Donti, P.L., Roderick, M., Fazlyab, M., Kolter, J.Z.: Enforcing robust control guar-

antees within neural network policies. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

22 Yuning Wang and He Zhu

18. Fisac, J.F., Akametalu, A.K., Zeilinger, M.N., Kaynama, S., Gillula, J.H., Tomlin,
C.J.: A general safety framework for learning-based control in uncertain robotic
systems. IEEE Trans. Autom. Control. 64(7) (2019)

19. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An
introduction to deep reinforcement learning. Foundations and Trends® in Machine
Learning 11(3-4) (2018)

20. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018 (2018)

21. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Tools
and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427
(2019)

22. Gillula, J.H., Tomlin, C.J.: Guaranteed safe online learning via reachability: track-
ing a ground target using a quadrotor. In: IEEE International Conference on
Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota,
USA (2012)

23. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80 (2018)

24. Hunt, N., Fulton, N., Magliacane, S., Hoang, T.N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. In: HSCC ’21:
24th ACM International Conference on Hybrid Systems: Computation and Control,
Nashville, Tennessee, May 19-21, 2021 (2021)

25. Janner, M., Fu, J., Zhang, M., Levine, S.: When to trust your model: Model-based
policy optimization. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada (2019)

26. Jayant, A.K., Bhatnagar, S.: Model-based safe deep reinforcement learning via a
constrained proximal policy optimization algorithm. In: NeurIPS (2022)

27. Johnson, T.T., Lopez, D.M., Benet, L., Forets, M., Guadalupe, S., Schilling, C.,
Ivanov, R., Carpenter, T.J., Weimer, J., Lee, I.: ARCH-COMP21 category report:
Artificial intelligence and neural network control systems (AINNCS) for continuous
and hybrid systems plants. In: 8th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH21), Brussels, Belgium, July 9, 2021.
EPiC Series in Computing, vol. 80 (2021)

28. Kamienny, P., d’Ascoli, S., Lample, G., Charton, F.: End-to-end symbolic regres-
sion with transformers. In: NeurIPS (2022)

29. Koller, T., Berkenkamp, F., Turchetta, M., Krause, A.: Learning-based model pre-
dictive control for safe exploration. In: 57th IEEE Conference on Decision and
Control, CDC 2018, Miami, FL, USA, December 17-19, 2018 (2018)

30. Kronberger, G., de França, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape-
constrained symbolic regression - improving extrapolation with prior knowledge.
Evol. Comput. 30(1) (2022)

Verified Exploration through Learned Models 23

31. Li, S., Bastani, O.: Robust model predictive shielding for safe reinforcement learn-
ing with stochastic dynamics. In: 2020 IEEE International Conference on Robotics
and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020 (2020)

32. Li, Y., Li, N., Tseng, H.E., Girard, A., Filev, D.P., Kolmanovsky, I.V.: Safe rein-
forcement learning using robust action governor. In: Proceedings of the 3rd Annual
Conference on Learning for Dynamics and Control, L4DC 2021, 7-8 June 2021,
Virtual Event, Switzerland. Proceedings of Machine Learning Research, vol. 144
(2021)

33. Liu, Z., Zhou, H., Chen, B., Zhong, S., Hebert, M., Zhao, D.: Safe model-based
reinforcement learning with robust cross-entropy method. CoRR abs/2010.07968
(2020)

34. Luo, Y., Ma, T.: Learning barrier certificates: Towards safe reinforcement learning
with zero training-time violations. In: Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual (2021)

35. Ma, Y.J., Shen, A., Bastani, O., Jayaraman, D.: Conservative and adaptive penalty
for model-based safe reinforcement learning. In: Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, Virtual Event, February 22 - March 1, 2022
(2022)

36. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is
competitive for reinforcement learning. In: Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada (2018)

37. Moldovan, T.M., Abbeel, P.: Safe exploration in markov decision processes. In:
Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012 (2012)

38. Sikchi, H., Zhou, W., Held, D.: Lyapunov barrier policy optimization. CoRR
abs/2103.09230 (2021)

39. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be safe: Deep
RL with a safety critic. CoRR abs/2010.14603 (2020)

40. Stooke, A., Achiam, J., Abbeel, P.: Responsive safety in reinforcement learning
by PID lagrangian methods. In: Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of
Machine Learning Research, vol. 119 (2020)

41. Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (2019)

42. Thananjeyan, B., Balakrishna, A., Nair, S., Luo, M., Srinivasan, K., Hwang, M.,
Gonzalez, J.E., Ibarz, J., Finn, C., Goldberg, K.: Recovery RL: safe reinforcement
learning with learned recovery zones. IEEE Robotics Autom. Lett. 6(3) (2021)

43. Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration in finite markov de-
cision processes with gaussian processes. In: Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain (2016)

44. Verma, A., Le, H.M., Yue, Y., Chaudhuri, S.: Imitation-projected programmatic
reinforcement learning. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada (2019)

45. Wang, Y., Zhu, H.: Verification-guided programmatic controller synthesis. In: Tools
and Algorithms for the Construction and Analysis of Systems - 29th International

24 Yuning Wang and He Zhu

Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994 (2023)

46. Yang, Q., Simão, T.D., Tindemans, S.H., Spaan, M.T.J.: WCSAC: worst-case soft
actor critic for safety-constrained reinforcement learning. In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021
(2021)

47. Yang, T., Rosca, J., Narasimhan, K., Ramadge, P.J.: Projection-based constrained
policy optimization. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 (2020)

48. Yang, Z., Zhang, L., Zeng, X., Tang, X., Peng, C., Zeng, Z.: Hybrid controller
synthesis for nonlinear systems subject to reach-avoid constraints. In: Computer
Aided Verification: 35th International Conference, CAV 2023, Paris, France, July
17–22, 2023, Proceedings, Part I (2023)

49. Yu, D., Ma, H., Li, S., Chen, J.: Reachability constrained reinforcement learning.
In: International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA. Proceedings of Machine Learning Research, vol. 162
(2022)

50. Zanger, M.A., Daaboul, K., Zöllner, J.M.: Safe continuous control with constrained
model-based policy optimization. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27
- Oct. 1, 2021 (2021)

51. Zhang, Y., Vuong, Q., Ross, K.W.: First order constrained optimization in policy
space. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020)

52. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019 (2019)

	Safe Exploration in Reinforcement Learning by Reachability Analysis over Learned Models

